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Abstract—A large fraction of bugs discovered in the design
flow of embedded control software arises from the interaction
of the control software with the plant it controls. Traditional
formal analysis approaches using interleaved controller-plant
reach-set analysis grossly over-approximate the reachable states
and doesn’t scale. In this article, we examine a verification
approach that considers a control system with the (possibly
nonlinear) plant dynamics and mode switches specified along with
the actual control software implementation. Given this input, we
generate a bounded-time safety verification problem encoded as
Satisfiability Modulo Theories (SMT) constraints. We leverage δ-
decidability over Reals to achieve scalability while verifying the
control software.

Index Terms—Sampled Data Systems, δ-Approximation, Con-
trol Software Verification

I. INTRODUCTION

Embedded control software (ECS) systems are at the core
of safety-critical functionalities present in domains like au-
tomotive, healthcare, avionics etc. Safety of such systems
rely heavily on the controller implementation and closed loop
plant-controller interactions. An isolated verification of the
control software can reveal presence of software bugs and
computational precision errors. Program analysis based soft-
ware verification focus on validating properties like absence
of overflow, arithmetic exceptions etc through reachability
analysis. However, such approaches have the following is-
sues. First of all, any counterexample produced during such
verification efforts may not be realizable in a closed-loop
setting. A software only verification effort simply ignores the
closed loop plant dynamics and properties related to multiple
control iterations, which is common for most useful control
system properties like performance, stability etc. On the other
hand, Hybrid Automata (HA) based approaches which model
multi-mode plant dynamics using locations and control up-
dates using transitions are often found introducing significant
over-approximation error during reach-set computation while
attempting to verify such properties [1].

In summary, the challenge with performing control software
verification in the loop with the actual plant dynamics, stem
from the following issues.

• Functional equivalence: The actual control software im-
plementation may possibly differ from the mathematical
control law, as perceived by the control designer.

• Platform effects: Control law updates may not be happen-
ing at the exact sampling instants, but may get delayed
due to platform level uncertainties.

• Non-linearity (at plant or controller side): while this may
be handled by linearization in case of plants, it is not
really the same with non-linear control designs.

For most closed loop applications, controllers are developed
using a Model Based Design (MBD) strategy. In MBD
paradigm, the plant and the controller models are represented
as continuous and discrete blocks consisting of continuous
plant dynamics and discrete switching logic respectively, ar-
ranged in a closed loop formation. This approach is popular as
it enables design, testing and verification to be performed in
single platform (eg. Stateflow / Simulink). For verification pur-
pose, such models are translated to abstract HA, which is com-
monly analysed using formal reachability analysis tools. Later,
in the system development life cycle, as the developer finalises
the mathematical model after several stages of corrections and
revisions as needed, the model is ready for implementation.
For implementation of this controller model into embedded
board (to run in closed loop with plant), Code Generation
tools (eg. Embedded Coder/Simulink Coder) present in the
MBD platforms are used. These code translations are mostly
unverified and can introduce subtle bugs [2], [3]. Moreover
as said earlier, common implementation platforms introduce
timing uncertainties during closed loop execution of such
software tasks.

The execution timings of embedded control task instances
are often non-ideal due to effects like sampling-jitter, sensing
delay, interference from other control tasks sharing a common
execution platform etc. These issues introduce variability in
the response time of the control task which further manifest in
terms of control execution drops which influence the stability
and the performance of the closed-loop system. However,
such issues are usually ignored in verification strategies for
control software implementations. In effect, although the high
level abstract model is verified, we need to verify if the
actual software controller implementation satisfies the safety
and performance specifications in closed loop over a finite
number of consecutive control iterations, (as is required by
the relevant property). There are tools like Sahvy [4], that
performs safety verification of closed loop systems, where the
plant is periodically sampled and actuated at discrete intervals
by the control program. Sahvy uses SMT solver Z3 to generate
assertions over the software state and FLOW* for obtaining
the reachable set of the plant but does not consider the effect
of timing uncertainties and disturbances. In [5] Duggirala et
al. have performed a closed-loop analysis of control programs
performed on a Real-time operating system, but it is limited



only to linear systems.
However, verification of a controller implementation with

the plant model, which is non-linear in general, is challenging.
Simulation-driven verification tools [6], [7] are reported to
scale well for industrial benchmarks. They use a falsification
based approach with the robustness semantics of a given
property as a cost function. There are tools with numerical
simulations for the plant model and the symbolic execution for
the control program [8]. For the purpose of formal verification
of non-linear systems, one needs to consider satisfiability prob-
lems over Reals, which is undecidable in general. However,
with a given arbitrary precision, δ > 0, these problems become
decidable [9] and can be solved using δ-approximation SMT
solvers like dReal [10]. dReach [11] and iSAT-ODE [12]
are two such tools that perform bounded model checking
of hybrid systems with the help of SMT solvers dReal and
iSAT respectively. Both tools can handle expressive models
with complex non-linear dynamics and reports verification of
industrial case-studies.

Fig. 1. Verification in MBD (blue dashed box) and Implementation (patterned
box) phase (grey boxes denote inputs to our tool).

In our work, we leverage the idea of δ-decidability with an
additional primitive, we create an SMT based representation
not only of the plant dynamics, but also for the control
software implementation. We consider an implemented control
software operating in iterations, at a fixed sampling time period
∆, in closed loop with a continuous plant. Our tool-chain (refer
to Fig. 1) proposes to verify the actual implementation of a
nonlinear control system i.e. C code executing in loop with the
plant dynamics under various disturbances, delays and jitters.

In summary, following are our major contributions.
1. Since our tool-chain considers an actual C implementation
of the controller, our tool-chain can potentially verify a sig-
nificant class of real life embedded control software.
2. Our tool-chain handles nonlinearity of a closed loop control
implementation by generating an SMT based encoding of the
closed loop and then leveraging the theory of δ-decidability
over Real numbers as supported by the dReal solver. Leverag-
ing δ-decidability provides us a tuning parameter for choosing

the suitable level of precision, a feature which we exploit to
handle large state spaces while preserving soundness of result.
3. Our tool incorporates semantic support for capturing timing
uncertainties like delay, jitters, and value based uncertain-
ties like sensor noise in order to check their effect on the
performance and safety of the closed loop. By considering
these as separate inputs, we are able to skip introducing
them in the top level HA model and retain the HA based
plant dynamics specifications as intuitive representations of
the original mathematical models. In the following section,
we present our proposed methodology. To demonstrate the
correctness of our approach, we provide analysis reports using
our tool on various benchmarks of closed loop control systems.

II. FRAMEWORK FOR ECS VERIFICATION

The plant dynamics of a single mode discrete control system,

ẋ = f(x, u, w) (1)

where, flow function f : X × U ×W → X , x ∈ X ⊆ Rdx is
system state vector, u ∈ U ⊆ Rdu is control input vector, w ∈
W ⊆ Rdw is input disturbance vector and dx, du, dw denote
the dimension of state, control input and disturbance vectors
respectively. The control input u remains constant during the
sampling period (∆). Due to the presence of delay/jitters, the
actual time Tk between kth and (k + 1)th control updates
becomes Tk = tk+1 − tk = ∆ + εk, where the sampling jitter
εk ∈ [0, ε] in the k-th execution period. We consider the upper
bounds on sampling jitter and quantization error for certain
variable as ε ≥ 0 and δvar > 0 respectively.

Tool Input Specifications: The input specification for our
tool as shown in Fig. 2 is described next.
(1) The Plant model file contains the plant dynamics specifi-
cation. Our modeling method follows the specification format
of [13] (called HASLAC) for capturing plants having multi-
mode dynamics, with Ordinary Differential Equations (ODEs)
describing the dynamics in each mode. In our modeling
formalism, we consider that the plant can have multiple flows,
f1, f2, · · · , one for each mode. This implies that the plant can
switch modes by itself based on guard conditions defined over
X as well as if dictated by the control software.
(2) The Control software is a C-program file which is the
controller implementation generated by Matlab Embedded
Coder toolbox. In earlier stages of MBD, high level tools
like Simulink/Stateflow are used to generate a plant-controller
model. Once verified to work properly in simulation this
controller code is then generated using inbuilt translators (e.g.
Embedded Coder). In our tool-chain, we use a standard input
format of the controller program. It helps omit any possibilities
of datatype mismatch. Plant states and control commands
between plant and controller program are exchanged through
two global data-structures respectively: INPUT_VAL(x) and
RETURN_VAL(u), a convention used in Embedded Coder with
x and u denoting plant state and the control actions as usual.
(3) The Configuration file specifies two types of input param-
eters (these can also be input via command line). A. System
Properties: This part contains (i) minimum and maximum



value bounds for system variables, (ii) goal property i.e.,
negation of the safety property that is to be verified.
B. Uncertainties & Disturbances: This part contains fields
for the following entries. (i) Sampling jitter and Response
time jitter: are timing uncertainty for the sensor data to be
read by the software and latency for the software to compute
the actuator parameters respectively. We model both of these
collectively to be input as ε to represent timing uncertainty
caused in every control loop iteration. (ii) Noise: specifies en-
vironmental disturbances (w) affecting the sensor data values,
(iii) Quantization error: captures the deviations that may occur
due to precision errors (δvar) in sensed or actuated values due
to fixed-point controller implementation. These uncertainties
and disturbances can be input being specific to variables.
After parsing we accordingly map them to the equations of
corresponding variables.

Fig. 2. Tool-flow for Verification of Embedded Control Software.

Tool Design: Figure 2 gives an overview of the different
steps, executed by the tool. The overall functionalities are
formalized in Algorithm 1 and step wise described below.

Algorithm 1 Algorithmic representation of Tool-Flow
Require: Plant Dynamics in HASLAC HA, Controller Program in C Code, Safety

property ϕsafety(x), Jitter Values ε, Disturbances w, Quantization error δ, Initial
range for plant and controller Init = 〈xinit, uinit, winit〉, Unrolling bound N

Ensure: δ-sat or unsat
1: 〈f(x, u, w),∆〉 ← HASLACPARSER(HA) . parse plant dynamics
2: CP (u, x)← CONTROLLERPARSER(Code) . parse C program
3: ϕ← ENCODESMT(f(x, u, w),∆, CP (u, x), ε, w, δ, Init, ϕsafety(x)) .

Encodes closed-loop system with the delays, noise and jitters into SMT over Reals
4: CALLDREAL(ϕ) . Calls dReal Solver to verify the encoded SMT formula
5: if ϕ is δ-sat then
6: return Counter-Example to rectify controller/scheduling policy.
7: else
8: return unsat
9: function ENCODESMT(f(x, u, w),∆, CP (u, x), ε, w, δ, Init, ϕsafety(x))

10: ϕ← null
11: x0

0 ← xinit, u0 ← uinit, w0 ← winit, t0 ← 0 . initializing variables
12: ϕ← ϕ ∧ Init(x0

0, u0, w0) . Init is the clause against initialisation of
variables

13: for k ∈ [0, N ] do
14: εk ← nondet([0, ε]) . non-deterministic sampling jitter εk ∈ [0, ε]
15: Tk ← ∆ + εk . starting iteration ε0 is release time
16: wk ← nondet([−w,w]) . non-deterministic noise wk ∈ [−w,w]

17: C1 : xt
k ←

∫ tk+Tk
tk

f(x0
k, uk, wk). state progression with disturbances

18: δuk
← nondet([−δu, δu]) . quantization error while actuation

19: δxk
← nondet([−δx, δx]) . quantization error while state estimation

20: xk ← xt=∆
k + δxk

21: C2 : uk+1 ← CP (xk, uk) + δuk
. Control input calculation

22: x0
k+1 ← xt

k . State updation
23: tk+1 ← tk + Tk

24: ϕ← ϕ ∧ C1 ∧ C2
25: ϕ← ϕ ∧ ¬ϕsafety(xt

N ) . safety property check
26: return ϕ

1. Model Transformation: The original multi-mode hybrid
automaton is transformed into a semantically equivalent single
mode representation at first. The multi-mode hybrid automata
input using HASLAC can contain multiple flow equations

f1 · · · fk from multiple modes. In the transformation step, we
replicate each state variable k number of times, in order to
model the evolution of the single mode system using one pos-
sible flow at a time. We represent this collection of state flow
equations using a flow equation vector f = [f1, f2 · · · fk]. To
enable this switching, we introduce auxiliary control variables,
using which we can mimic the mode switching logic and
switch between different flow equations observing different
plant states in single mode.
2. Parsing Plant Dynamics: The transformed plant model is
parsed using the HASLAC parser as a single mode automaton
object (Line 1). This hybrid automaton model [14] contains all
the flow equations (sets of ODEs) following which the plant
variables evolve over time, guards and invariant conditions (eg.
sampling interval, i.e. how frequently the plant should interact
with controller to update the state).
3. Parsing Controller Program: The control program next
is parsed using the Clang/LLVM library. The program then is
translated to LLVM bitcode and the bitcode IR is then con-
verted into Single Static Assignment (SSA) form for tracking
the evolution of controller variable with time progress. Using
appropriate LLVM code this representation can be converted
into an SMT encoding. This SMT encoding essentially rep-
resents a functionally equivalent logical representation of the
controller program, expressed as CP () (in Line 2).
4. SMT Formulation and Verification: The EncodeSMT()
function in Algorithm 1 automatically creates the SMT for-
mulation that captures the system progression. It generates
an assertion ϕ that contains SMT formula of closed loop
system evolution via plant-controller communication for N it-
erations in presence of non-deterministic noise and jitters. The
closed-loop execution starts with an initial set (x0, u0, w0),
i.e. the initial values of x, u, w respectively (Line 11). A
continuous flow from x0

k to xtk in time Tk is governed by
Eqn.(1) in every iteration i.e. the plant progresses following,
xtk =

∫ tk+Tk

tk
f(x0

k, uk, wk) (Line 17). Here wk is the non-
deterministic process noise within the user input range (w,
see Line 16). The interval Ti is affected by a non-deterministic
sampling jitter εk within user specified range ([0, ε]) (Line 14-
15). In each sampling step, the parsed and simplified control
program CP () computes the next control output uk+1 using
last updated plant state xtk, i.e. uk+1 = CP (uk, x

t
k) (Lines

20-21). A quantization error value tuple (δx, δu) is non deter-
ministically chosen from user input range and added during
actuation (Lines 18, 21) and state estimation (Lines 19-20).
All the uncertainty and disturbance parameters, like sampling
jitter, noise, quantization errors and the unroll bound N are
provided by the user in the configuration file. In each iteration
of the loop (Line 24), SMT clauses are created capturing the
possible trajectories in each iteration and added to the formula
under construction. Our goal is to check if the reachable do-
main of final state following the state progression as captured
by the SMT is safe. At the end of N iterations of the for
loop, we have an overall forward reachability formula that is
put in conjunction with the negation of desired safety property
¬ϕsafety (Line 25) to give the final formula ϕ, returned by



EncodeSMT(). In symbolic form, the overall formula for N
iterations becomes, ϕ = Init(x0

0, u0, w0) ∧
∧N−1
i=0

[
(xti =∫ ti+Ti

ti
f(x0

i , ui, wi)) ∧ (ui+1 = CP (ui, xi + δxk
) + δuk

)
]

∧¬ϕsafety(xtN ) , with clauses for non-deterministic choice
abstracted for brevity. We use SMT-LIB version 2.0 to for-
mulate this assertion, as it has extensions to declare systems
of ODEs [9]. Our tool finally generates a file containing the
SMT encoding of assertion ϕ following above equation in
prefix notation (Line 3). The returned SMT formula, capturing
the plant dynamics, timing and quantization effects and the
actual semantics of the control software, is then passed to the
dReal solver (Line 4) for satisfiability check. On getting δ-SAT
decision from dReal, the tool reports that a counterexample
exists in presence of a δ perturbation bound on the variables,
that takes the system to an unsafe situation within N unrolling
(Line 6). If the tool reports UNSAT, we have a guarantee
that the implemented closed loop control software is safe for
the assumed condition bounds (Line 8). In general, counter
example traces provide the system designers useful informa-
tion about possible implementation solutions, e.g. updating the
mathematical control law or changing scheduling policy, task
mapping etc in the embedded platform (refer Fig 1).

III. EXPERIMENTAL RESULTS

We evaluate our approach on a set of well-known safety-
critical CPS benchmarks. The control program is either an
abstract version of the actual program or a piece of generated
C-code from the Embedded Coder toolbox. This code is
annotated to satisfy the requirement for our tool-interface. We
perform our experiments on a four-core Intel Xeon(R) 3.50
GHz CPU E5-2637 v4 with 255 GB of RAM.

TABLE I
SUMMARY OF THE BENCHMARK DESIGNS

Benchmark dx ∆[sec] k LOC δ RT[sec] Result

Thermostat 2 0.2 5 72 0.001 60.814 δ-SAT
DC Motor 3 0.02 50 43 0.01 96.67 UNSAT
Yaw-Damper 6 0.05 200 21 0.001 51.95 UNSAT
Powertrain 9 0.01 50 177 0.001 94.34 δ-SAT
Lunar Lander 6 0.128 80 30 0.01 142.36 UNSAT
EMB 4 0.001 23 39 0.001 113.56 UNSAT
ACC 1 0.02 6 20 0.01 8915 δ-SAT
dx =dimension of system, ∆ = Sampling Period, k = the number of iterations,

LOC = Line of Code, δ = Precision and RT =Run Time of the tool-chain

In the thermostat model [8], we observe that the temperature
drops below the specified safe value (52◦F ) when there is a
sampling jitter of 0.1 second. The DC Motor system has two
state-variables, armature current(i) and angular velocity(θ̇).
The verification task is to check whether a forbidden region
defined as i ∈ [1.0, 1.2] ∧ θ̇ ∈ [10, 11] is reachable by the PI
control logic. This set is chosen because it is observed that this
combination is hard to reach with random simulations [8]. We
have also successfully verified the correctness of the controller
in 1) Yaw-damper for a 747 aircraft [1], with 200 closed-
loop iterations, 2) Powertrain benchmark [15] (non-linear
controller) with 50 closed-loop iterations. The Yaw-damper

and Powertrain benchmarks have been analyzed for steady-
state spiral-mode and normal-mode respectively. The goal of
the non-linear controller in Powertrain benchmark [15] is to
keep the air-to-fuel ratio close to an ‘ideal’ stoichiometric
ratio. In similar veins, we have also performed successful
verification of Descent Guidance of a Lunar Lander [16],
Adaptive Cruise Controller (ACC) [17] and Electro-Mechanic
Braking System (EMB) [18]. Details about target properties
and initial configurations are available in cited literature and
in the provided web link [19].

IV. CONCLUSION

We present a tool framework to verify the safety property of
closed-loop systems under the influence of timing uncertainties
and environmental disturbances. We demonstrate bounded-
time verification results on benchmarks of standard control
systems. In the tool, the designer can directly input the
controller program along with the plant dynamics and observe
the impact of data and timing discrepancies on the safety
requirements of the actual software implementation. We plan
to extend the tool in terms of scalability and handling of
complex non-linear systems in future using novel techniques
for approximate reachability analysis.
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