
EXPLORING PLATFORM AWARE FORMAL
METHODS FOR SAFE AND SECURE

CYBER-PHYSICAL SYSTEMS

Sunandan Adhikary

Exploring Platform Aware Formal Methods for
Safe and Secure Cyber-Physical Systems

Thesis submitted to

Indian Institute of Technology Kharagpur

For the award of the degree

of

Master of Science

by

Sunandan Adhikary
(Roll No: 18CS71P07)

Under the guidance of

Prof. Soumyajit Dey

Department of Computer Science & Engineering

Prof. Aritra Hazra

Department of Computer Science & Engineering

Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

July 2021

All rights reserved. ©2021 Sunandan Adhikary

APPROVAL OF VIVA-VOCE BOARD

Date: 9 / July /2021

Certified that the thesis entitled EXPLORING PLATFORM AWARE FOR-
MAL METHODS FOR SAFE AND SECURE CYBER-PHYSICAL SYSTEMS
submitted by SUNANDAN ADHIKARY to INDIAN INSTITUTE OF TECH-
NOLOGY KHARAGPUR, for the award of the degree of MASTER OF SCIENCE
has been accepted by the external examiners and that the student has successfully
defended the thesis in the viva-voce examination held today.

Prof. Pallab Dasgupta Prof. Debdeep Mukhopadhyay

Member of DAC Member of DAC

Prof. Alok Kanti Deb

Member of DAC

Prof. Soumyajit Dey Prof. Aritra Hazra

Supervisor Joint Supervisor

Prof. Siddhartha Mukhopadhyay Prof. Dipanwita Roy Chowdhury

External Examiner Chairman

iii

DECLARATION

I, Sunandan Adhikary, Roll No. 18CS71P07, registered as a student in the De-
partment of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, India (herein after referred to as the ‘Institute’) do hereby submit my
project report, titled: EXPLORING PLATFORM AWARE FORMAL METH-
ODS FOR SAFE AND SECURE CYBER-PHYSICAL SYSTEMS (herein after
referred to as ‘my thesis’) in a printed as well as in an electronic version for holding
in the library of record of the Institute.

I hereby declare that:

1. The electronic version of my thesis submitted herewith on CDROM is in
PDF Format.

2. My thesis is my original work of which the copyright vests in me and my
thesis does not infringe or violate the rights of anyone else.

3. The contents of the electronic version of my thesis submitted herewith are
the same as that submitted as final hard copy of my thesis after my viva
voce and adjudication of my thesis in July 2021.

4. I agree to abide by the terms and conditions of the Institute Policy and
Intellectual Property (herein after Policy) currently in effect, as approved
by the competent authority of the Institute.

5. I agree to allow the Institute to make available the abstract of my thesis in
both hard copy (printed) and electronic form.

6. For the Institute’s own, non commercial, academic use I grant to the Institute
the non-exclusive license to make limited copies of my thesis in whole or in
part and to loan such copies at the Institute’s discretion to academic persons
and bodies approved of from time to time by the Institute for non-commercial
academic use. All usage under this clause will be governed by the relevant
fair use provisions in the Policy and by the Indian Copyright Act in force at
the time of submission of the thesis.

7. Furthermore,

(a) I agree to allow the Institute to place such copies of the electronic
version of my thesis on the private Intranet maintained by the Institute
for its own academic community.

v

vi

(b) I agree to allow the Institute to publish such copies of the electronic
version of my thesis on a public access website of the Internet should
it so desire.

8. That in keeping with the said Policy of the Institute I agree to assign to the
Institute (or its Designee/s) according to the following categories all rights
in inventions, discoveries or rights of patent and/or similar property rights
derived from my thesis where my thesis has been completed.

(a) With use of Institute-supported resources as defined by the Policy and
revisions thereof,

(b) With support, in part or whole, from a sponsored project or program,
vide clause 6(m) of the Policy. I further recognize that:

(c) All rights in intellectual property described in my thesis where my work
does not qualify under sub-clauses 8(a) and/or 8(b) remain with me.

9. The Institute will evaluate my thesis under clause 6(b1) of the Policy. If
intellectual property described in my thesis qualifies under clause 6(b1) (ii)
as Institute-owned intellectual property, the Institute will proceed for com-
mercialization of the property under clause 6(b4) of the policy. I agree to
maintain confidentiality as per clause 6(b4) of the Policy.

10. If the Institute does not wish to file a patent based on my thesis, and it
is my opinion that my thesis describes patentable intellectual property to
which I wish to restrict access, I agree to notify the Institute to that effect.
In such a case no part of my thesis may be disclosed by the Institute to
any person(s) without my written authorization for one year after the date
of submission of the thesis or the period necessary for sealing the patent,
whichever is earlier.

Sunandan Adhikary

Preface

The possibilities of incorporating various mathematical theories for a better
understanding of control systems always intrigued me. Maybe this is what at-
tracted me the most to this domain of research. But it always was my Maa and
Baba whose inspirations made me confident to take another dive into academia.
My interest in formal methods grew as I started working with my co-workers in
this domain after joining the Formal Methods and HiPRC lab in IIT Kharagpur.
This experience shaped my ideas. With the suggestions from professors and col-
leagues, I studied and discovered the developments in this research domain. The
current trend led me to this very topic of analyzing the security and safety of
real-world cyber-physical systems by exploring their control-theoretic and formal
aspects. However, the main credit behind shaping my works to this current form
goes to my instructors, who inspired me with out-of-the-box ideas and helped me
formalize them efficiently.

I acknowledge deep gratitude to my supervisors, Professor Soumyajit Dey and
Professor Aritra Hazra, for their insights and criticisms. Professor Dey always
kept me motivated to think innovatively and explore new ideas in my domains
of interest. Professor Hazra has always been a great advisor and teacher who
guided me when I needed it most. I am grateful to the principal investigator
of my project, Professor Pallab Dasgupta, for believing in my abilities. I would
also like to thank Professor Debdeep Mukhopadhyay and other members of my
Department Academic Committee for their wise counsel.

Words might fall short but the thesis remains incomplete without acknowledg-
ing my friends and colleagues who have been an integral part of this journey. I
would first like to mention those friends and colleagues, without whom my research
endeavours would have never become successful. I am grateful to Ipsita, whose
constant support, guidance and friendship kept my boat sailing. Another special
mention goes to Amit, from whom I learnt the most, whether about research or
life. Big thanks to my lab seniors, Sumana di and Saurav da, who privileged me
with their expertise and constructive criticisms. I must thank each one of my
friends in FM, HiPRC lab, as it would never be possible to get through the hard-
est of times without them. So thanks to my ‘emergency contact’ Rumia, Ipsita,
Sudipa, Madhumita, who tirelessly tolerated and loved me the most. Big thanks
to Soumyadyuti for always guiding like a brother, Sayandeep for being that old
friend who believed in me. I would like to thank Srijeeta, who has always been
by my side as a caring friend, Satadal da, for being an awesome roommate, and
Arnab, Briti, Jaffer, Praveen, Sourav, Sumanta, who always have been there for
me to cheer me up. Anirban da, Arindam da, Devleena di, Rajib da, Sanga di,
Sudakshina di, Amit, Antonio, Sayandeep da always indulged me with their love,
advice, and patience like my own elder brothers and sisters. I thank them and
many more who have always stood beside me on the way. Also, thanks to Surajit
da for looking after the official matters like my local guardian. Presumably, no
sentiments were hurt while choosing the order and the names. Each and everyone
in this extended family were as important as my parents to get me by the highs
and lows of this phase of my life.

vii

Abstract

Most engineering application domains, where cyber-physical systems (CPS)
are used, like automotive, avionics, healthcare, etc. are safety-critical. Issues
like (i) Resource limitations, (ii) timing non-idealities in implementation plat-
form, (iii) security vulnerabilities in the communication network, etc. have been
known problems to challenge performance and security of CPS. As the require-
ments for more features and more autonomy arise, CPS implementations are be-
coming more susceptible to such issues. This poses threat to safety of the CPS
design as well. Hence, formal verification methodologies are introduced to pro-
vide safety guarantees for such CPS implementations. Embedded control software
(ECS) is at the heart of such implementations. A large fraction of bugs dis-
covered in the design flow of Embedded Control Software (ECS) arises from the
interaction between the ECS and the plant it controls. The traditional formal
analysis approaches, that use interleaved controller-plant reachable set analysis
grossly over-approximate the reachable states and do not scale. In the first work,
a bounded-time safety verification framework is proposed to verify an actual im-
plementable ECS, that is in closed-loop with a possibly non-linear plant dynamics
with controller-guided switchable modes and is affected by platform originated
non-idealities or implementation-level bugs. The proposed tool-chain solves a
bounded-time verification problem, using Satisfiability Modulo Theories (SMT)
constraints and utilizes δ-decidability over Reals to make the procedure scalable.

The concept of aperiodic or multi-rate execution of control programs has
gained preference in order to cope with the timing uncertainties introduced in
shared embedded platforms because of limited computing resources and commu-
nication bandwidth. In the second work of the thesis, a control theory based
formal methodology is developed to synthesize such aperiodic control execution
sequences maintaining desired performance margin.

Adversarial interventions during the data exchange between plant and con-
troller through communication networks are an obvious flip side of connectivity-
enhancements of modern-day CPS. Such interventions can be thwarted using con-
tinuously operating monitoring systems and cryptographic techniques, both of
which consume significant amount of network and computational resources. The
third work in this thesis develops a methodology to design an intrusion detection
system (IDS) that provides provable security guarantee against false data injec-
tions (FDI) attacks with minimized resource usage. As a useful control-theoretic
strategy against stealthy attacks, aperiodic control execution sequences are used.
These sequences are then utilized to build a platform-aware and provably secure
IDS scheme for CPS. As can be seen, such a countermeasure helps in lowering the
computation and communication overhead of state of the art monitoring/crypto-
graphic security measures.

In summary, the thesis reports a collection of formal techniques which may
be useful in design of safe and control theoretically secure but lightweight CPS
implementations.
Keywords: False Data Injection, Intrusion Detection System, IDS, CPS

Security, Aperiodic Control Execution, Embedded Control System, Safety
Verification, SMT Based Verification.

ix

Notations and Abbreviations

CPS Cyber-Physical System(s)

MBD Model Based Design

ECS Embedded Control Software

FDI False Data Injection(s)

IDS Intrusion Detection Systems

LTI Linear Time Invariant

LQR Linear Quadratic Regulator

MLF Multiple Lyapunov Function

ADT Average Dwell Time

MDADT Mode-Dependent Average Dwell Time

CSS Control Skipping Schedule

CSA Control Skipping Automaton

VDC Vehicle Dynamics Control

TTC Trajectory Tracking Control

ECU Electronic Control Unit

CAN Controller Area Network

MAC Message Authentication Codes

‖x‖ Euclidean Norm of variable x if any other norm is not mentioned

x[k] or x(k) Variable x at k-th sampling period

G Guard Condition

Inv Location Invariant

V () Lyapunov Function

σ Switching Signal

ρ Control Skipping Pattern

τd Dwell Time

K Controller Gain Matrix

L Kalman Gain Matrix

x or X System State Vector

u Control Input Vector

dmin Minimum Attack Length

nup IDS Up Time

ndown IDS Down Time

xi

Contents

APPROVAL OF VIVA-VOCE BOARD iii

Declaration v

Preface vii

Abstract ix

Notations and Abbreviations xi

1 Introduction 1
1.1 Motivations and Contributions . 3

1.1.1 Safety Verification of CPS Implementation 3
1.1.2 Resource-Friendly and Provably Secure CPS Security 5
1.1.3 Resource Optimization of Secure CPS: 6

1.2 Our Objectives . 6
1.3 Contributions . 7

1.3.1 Safety Verification of CPS Implementation Using Formal Methods 8
1.3.2 A Formal Methodology using Control theory for Resource Op-

timization of Secure CPS . 9
1.3.3 Resource-Friendly and Provably Secure CPS Security Design

Using Formal Methods . 11
1.4 Thesis Organisation . 13

2 State-of-the-art Approaches in Safe and Secure CPS Design 15
2.1 CPS Design and Verification . 15
2.2 Related work on Safety Verification of CPS 16
2.3 Threats to CPSs and Used Security Measures 18
2.4 Related Work on Lightweight CPS Security Design 20
2.5 Related Work on Aperiodic Control Executions and Weakly-hard Con-

straints for CPS . 21
2.6 Summary . 22

3 Verification of Embedded Controller Implementations in Safety-
critical CPS 23
3.1 Background . 23
3.2 Tool Input Specifications: . 24
3.3 Tool Design . 26
3.4 Experimental Results . 29

3.4.1 Experimental Setup . 29

xiii

xiv CONTENTS

3.4.2 System Descriptions and Safety Verification 30
3.5 Concluding Remarks . 31

4 Automata-Theoretic Framework for Performance-aware Aperiodic
Control Execution Synthesis 33
4.1 System Model . 33

4.1.1 Control Design and Performance Metrics 36
4.2 Formalization of Switching between Control Executions and Control

Skips . 37
4.3 Stability Analysis of Switched Systems using MDADT Approach 39
4.4 Recognizer for stable control loop skips 41
4.5 Results . 46
4.6 Concluding Remarks . 48

5 Utilizing Aperiodic Control Executions to Design Resource-friendly
Secure CPS 49
5.1 Description and Formalization of Secure CPS 49

5.1.1 Control System Modeling . 50
5.1.2 Control Design and Performance Metrics 51
5.1.3 Formalization of Sporadic IDS 53
5.1.4 Attack Modeling . 54

5.2 A Motivating Example . 56
5.3 Proposed Methodology . 58

5.3.1 Attack Vector Synthesis . 58
5.3.2 Synthesizing Attack Resilient Patterns 59

5.4 Results . 62
5.4.1 Case Studies . 62
5.4.2 Manifestation on CAN bandwidth 65

5.5 Concluding Remarks . 67

6 Conclusion 69
6.1 Summary . 69
6.2 Limitations and Future Scopes . 71
6.3 Final Note . 72

Bibliography 73

Publications From This Thesis 81

List of Figures

1.1 Verification in MBD and Implementation phase(grey boxes are tool
inputs). 3

1.2 Primary Objectives . 7
1.3 Developed SMT-Based ECS Verification Tool-Chain 8
1.4 Provably secure CPS with Resource-awareness 10
1.5 How a Sporadic IDS Operates . 12

2.1 A Secure CPS . 20

3.1 Safety Verification of Embedded Control Software 24
3.2 Tool-flow for Verification of Embedded Control Software. 26
3.3 Sample inputs to the tool to verify thermostat model 29
3.4 Counter example trace found during verification of thermostat model . 30

4.1 A closed loop system with skipped control executions 34
4.2 Realization of Control Skipping Patterns as Switched System 38
4.3 Schematic of CSA Realized for a system with m Stabilizable Controllers 44
4.4 Execution of a Pattern Generated Using CSA for Power Generator . . . 47

5.1 FDI attack on a secure CPS . 52
5.2 Sporadic IDS Formalization . 53
5.3 Attack vector for periodic not stealthy on 11010011 57
5.4 Stealthy and successful attack for 11010011 with more ndown 57
5.5 Plotting V (in blue) in left y-axis and residue r (in red) in right y-axis

(in corresponding scales) to demonstrate the effect of stealthy attack
on TTC with and without pattern-based execution. V crossing the
blue dashed line (safety boundary of V) leads to violation of safety and
r crossing the red dashed line (Th) indicates attack is detected. 57

5.6 Example of FDI Attacks on Patterned Execution 65
5.7 Stealthy attack on VDC . 65
5.8 Higher IDS Off time (ndown) for control skipping 65
5.9 (a) CAN Transmissions with sporadic IDS in presence of adversary, (b)

Message flow for (1)ω, (c) Message flow for (10)ω 67

xv

List of Tables

3.1 Analysis of controllers with implementation uncertainties 29

4.1 MDADT for all subsystems in T . 47

5.1 System Specifications . 63
5.2 Designed Sporadic IDS schemes for VDC and TTC 64

Chapter 1

Introduction

Modern age technological advancements have widened the domain of applications
for cyber-physical systems (CPS), ranging from automotive, manufacturing, en-
ergy sectors to daily household activities. On the one hand, we have CPS ap-
plications pertaining to real time IoT devices in multimedia, health-monitoring
etc. On the other hand, we have large scale applications like (semi-)automated
connected vehicles executing individual and cooperative maneuvers in Transporta-
tion CPS. We also have geographically distributed chemical plants with centralized
networked control units governing seamless autonomy in a wider scale. Such large
scale autonomous implementations have been made feasible in modern times due
to the advent of low power compute, sense and actuator systems, along with novel
control architectures. In all these systems, physical processes of a plant are moni-
tored and controlled by computation units over the networks (cyber connectivity
part). This gives rise to the portmanteau ‘cyber-physical systems’ (CPS). As ex-
plained by Dr. Rajiv Alur in his book Principles of Cyber-physical Systems, "The
concept of a cyber-physical system is a generalization of embedded systems. A
cyber-physical system consists of a collection of computing devices communicating
with one another and interacting with the physical world via sensors and actuators
in a feedback loop." Development of low-power, fast computing platforms in past
few decades has enhanced the scope of deploying complex real time software for
co-ordinated control of physical processes. This is further possible due to similar
improvements in sensing and communication methods. This opportunities have
opened a new challenge to develop a domain-specific, systematic and efficient ap-
proach to integrate the design of control, computation, and communication, which
proved to be the catalyst for the formation of a distinct academic discipline in the
form of cyber-physical systems (CPS). The underlying mathematical model of CPS
can be characterized based on its domain of application. A large scale CPS like
power distribution system or industrial process control system will have different
sensor-actuator network architecture, control unit specifications, etc. than a mo-
bile CPS like an automated car or unmanned aerial vehicle (UAV). The resource

1

2 1. Introduction

requirement for most CPS are, (i) a computation unit with processing bandwidth
which is enough to make the control loops schedulable, and (ii) a real time com-
munication medium for sensor data transmission and control update actuation
which ensures deadline guarantees. In general, requirement-specific improvements
in implementation platform, scheduling strategy, communication medium, control
algorithm design, etc. have majorly been the fundamental research goals for CPS
in the last decade.

Due to several recent advancements, large-scale CPS are modularized into dif-
ferent sub-systems to handle various functionalities. Each of them is implemented
as a computer controlled discrete-time systems [7]. The control software for those
sub-systems is implemented on a shared or dedicated platform, based on the re-
quirements and available resources [65]. For example, as per the directives of
AUTOSAR, the automotive consortia formed by the global car manufacturers,
an automotive should contain 50-100 ECUs to implement separate aspects of it.
Those ECUs and the huge network connecting them, also need to be shared among
different control tasks [35]. As the modern-age requirements demand more feature-
rich CPS implementations, the increased number of federated or integrated control
units require advanced and more capable computation platforms and communi-
cation network to control the plants within bounded time. However, with this
rapid advancements some challenging factors become prominent, such as, (i) com-
munication and platform originated non-idealities (like delay, noise, jitter), (ii)

possibility of unauthorised access in the communication network, etc. Amongst
all the requirements in any CPS, performance, security and safety, are primarily
challenged by these adverse factors. So, improvement in CPS design for safekeep-
ing of these properties has always been an area of interest for researchers, while
keeping resource constraints in mind.

In addition to this, most CPS are safety-critical in nature. This implies, failure
scenarios and unmodeled dynamics during the real-time operation of such systems,
may have fatal consequences. In order to ensure that the design disallows such
unsafe behavior and operates as intended in real-time, there must be a guarantee
provided against any CPS design with respect to its safely specification. The
theory of formal methods has already been popularly used for model checking and
debugging of software systems. With an understanding of the application domain
and the requirements, these methods can also aid the verification of CPS from
several domains. Accordingly, in the last few decades, researchers have developed
different techniques for CPS verification expecting to achieve more accuracy and
coverage. This has led to novel algorithms and frameworks for formal verification
of CPS. In the following section, we discuss briefly about the existing research
works on safety and security verification of CPS to figure out the gaps in these

1.1. Motivations and Contributions 3

domains of research.

1.1. Motivations and Contributions
Here we summarize the shortcomings of previous work that are done in this do-
main and the motivations we draw from them. The motivations behind the novel
methodologies speaks for the solutions we choose to solve the problems addressed
in this thesis.

1.1.1. Safety Verification of CPS Implementation

For most of the closed-loop applications, controllers are developed using a Model-
Based Design (MBD) strategy as it enables design, testing and verification to
be performed in a single design platform (eg. Stateflow/Simulink). During ver-
ification, these models are translated into abstract hybrid automata (HA) and
commonly analyzed using formal reachability analysis tools. After stages of revi-

Figure 1.1: Verification in MBD and Implementation phase(grey boxes are tool
inputs).

sions, the controller part is translated from the finalized model for implementation
in embedded boards.

Firstly, verification of the HA representation of a hybrid system introduces lots
of over-approximation error, which keeps on increasing in each closed loop iteration
as seen in [8]. This might end up declaring a safe closed loop design as an unsafe
one, owing to the inaccuracy introduced in the model due to over-approximation.

4 1. Introduction

Secondly, considering the maximum possible delay and noise during verification
runs also end up restricting the design. Consequently, the design might demand
redundant resource-allotments to stay safe, which is not affordable considering
the resource constraints of a CPS. Thirdly, in case of model-based design, a buggy
or imprecise translation of the safe model-based design into the implementable
control program might still lead to an unsafe situation [66]. Hence, verification
of the hybrid model for a certain range of non-idealities is either conservative, or
does not guarantee the safety of the final implementation. So control-scheduling
co-design [6] approach is used to tune the CPS design to keep it aligned with the
implementation platform. However, we need to verify the safety of the CPS de-
sign under constraints imposed by such co-design techniques, since multiple control
loops are generally mapped on integrated platforms.

Control-scheduling co-design methods actually keep in account all of the im-
plemented control tasks, affected by platform level non-idealities during design
optimization. With increasing number of tasks in modern CPS this global opti-
mization problems might not be scalable. So, designers often consider weakly-hard
real-time constraints [10] to relax the temporal constraints for control tasks and
make the co-design problem scalable. The term weakly-hard is coined from weak-
ening of the hard real-time constraints/deadlines of implemented control tasks.
Such weakening is often performed in terms of formal specifications which capture
the amount of relaxation an observed quantity may forgo inside bounded obser-
vation windows. One such example is (m,k)-firm specifications of task execution
which specify that inside every consecutive k observations, at least m instances of
the task must execute within deadlines. But such weakening of specifications also
needs to be done respecting a safety envelope. Especially when there are platform
level non-ideal situations in place. So, anyway one must verify the co-designed
CPS in presence of the platform generated irregularities. Naively applying ex-
isting program verification techniques directly on control software generated by
MBD tools (e.g. embedded coder toolbox in Matlab) ignores the following issues
- (i) the closed loop characteristics like, performance, stability are ignored and
(ii) there might exist unsafe state-space reachability scenarios, that are not con-
ceivable from software-only static analysis but emerge as a valid behavior when
symbolically computed in closed-loop with the plant dynamics. Hence, verifying
only the control software without the closed loop is never sufficient to ensure safety
of the closed loop implementation. Since we need a safety guarantee before we
certify the implementation-ready closed loop design as usable in real-time, for-
mal methodologies are always the first choice. So, we need a formal methodology
to verify a raw, implementation-ready ECS, considering it in closed loop with a
non-linear plant (which is mostly the case) and also in presence of platform level

1.1. Motivations and Contributions 5

temporal and data-related uncertainties. This is because, unless we make the ver-
ification process platform-aware, the safety of the co-design is never ensured in
real-time as discussed earlier. As per our knowledge there is no such verification
tool that precisely handles this issue and is also scalable. This is our motivation
behind the first work in this thesis that is explained in Sec. 1.3.1.

1.1.2. Resource-Friendly and Provably Secure CPS Security

In Man-in-the-middle type attacks like False Data Injection (FDI), an adversary
injects false data in the communication medium between the plant and the con-
troller with the intention of driving the system to an unsafe state by changing
the set point of the system [57,79]. But resource heavy techniques like encryption
cannot be used to secure all control loop data exchanges (i.e. sensor readings and
control commands) considering the resource constraints of CPS [43]. So securing
CPS against such attacks, but with optimized resource-consumption is a highly
sought-after research direction in CPS domain [43, 52]. However current resource
constrained implementation of CPS lack formal guarantees against stealthy FDI
attacks [78]. Formal methods provide an avenue to develop such a methodology
that can guarantee the resilience of a CPS against stealthy FDI attacks. In this
work, we utilize satisfiability modulo theory (SMT) based formal techniques to en-
code the state space evolution of a CPS under stealthy FDIs and prove its security.
This is the main objective of our third work in the thesis.

FDIs may potentially affect sensed plant output and also subsequently calcu-
lated control inputs that are sent to the actuator. So, in order to minimize the
effect of false data injection in sensor measurements, it may be useful to skip the
control law computation in some carefully chosen sampling instants while ensuring
that such occasional skipping of control executions do not hamper the desired con-
trol performance. In such skipped executions, since neither the control inputs, nor
the sensor measurements are communicated, there is no chance of manipulation
by malicious data injected by the attacker into the communication channel. So,
the system does not evolve erroneously but works with the past control or sensor
updates, without hampering the performance margin. Now, even if the attacker
is aware when the control executions are skipped, it has to try longer to make the
system unsafe by false data injection. Moreover, aperiodic execution can make it
harder to guess the skipped instances of control execution and effectively inject
faulty data into the system for the attacker to succeed. But the important thing
is, the performance of the closed loop CPS must not be hampered. To handle
this we develop a control-theoretic strategy that can help us decide when can we
skip the control execution and still maintain a desired system performance. This
is the main motivation behind using the aperiodic control executions in order to

6 1. Introduction

improve the security with reduced resource requirements. This resource-friendly
secure CPS design is our third contribution in the thesis and is described briefly
in Sec. 1.3.3.

1.1.3. Resource Optimization of Secure CPS:

A safety-critical control loop can be designed based on weakly hard constraints,
provided it can tolerate a certain number of deadline misses while maintaining the
desired performance. Since we intend to relax the resource requirements of a se-
cure CPS implementation, we need a methodology that allows skipping of control
executions less conservatively than state-of-the-art control skipping strategies. So,
we utilize mode dependent average dwell time (MDADT) [85,89,93] calculation to
derive a switching strategy among loop skips and loop executions. MDADT con-
siders subsystem characteristics which allow visiting to and from the marginally
stable subsystems (w.r.t the performance margin provided). This can help uti-
lize the weakly-hard design constraints of an implementation-ready secure CPS
in an optimistic way and consequently reduce the resource consumption without
compromising the performance. This it the motivation behind development of a
switching stability-based methodology in our second contribution of thesis. The
detailed methodology is described in Sec. 1.3.2. We adopt the concept of loop
skipping patterns [32] to denote the repeating finite sequences of control execu-
tions (a required deadline hit, denoted by a 1) and control execution skips (i.e.
an allowable deadline miss, denoted with 0) from the related research work, dis-
cussed earlier. The idea is to model the aperiodic control execution of a CPS
as a switched system to utilize existing control theoretic tools in order to prove
switched system stability. Now it will be beneficial if a finitary representation like
an automaton can be constructed so that given a performance requirement, the
language of the automaton captures all such stable skip patterns which satisfy the
desired performance margin. This collaboration of a control theoretic strategy with
a formal language-theoretic strategy helps in scheduler design, since the automa-
ton can generate execution schedules allowing the skipping of control executions in
certain closed loop iterations, but staying within the performance margin. To this
date, we are not aware of any other attempt towards such automata construction
for capturing control execution patterns satisfying some performance requirement.
We consider this specific contribution useful in the context of control scheduling
as well as skipping pattern selection for secure CPS.

1.2. Our Objectives
Based on the motivations that are inspired from the shortcomings of the state-of-
the-art approaches here we summarize the primary objectives of our work below

1.3. Contributions 7

Figure 1.2: Primary Objectives

(and depict them in Fig. 1.2).

1. Development of a formal methodology to verify whether the control soft-
ware generated from model-based design-flows is not excessively over-
approximated (resulting in a pessimistic design), and does not jeopardize
the safety of the closed loop. The verification methodology considers that
the controller implementations execute in a shared platform, in presence of
the non-idealities due to deadline misses, jitter, noise etc., that can pose
threat to safe and robust CPS design.

2. Development of a lightweight intrusion detection system design for a secure
CPS implementation that will respect the resource limitations of CPS.

3. A control theoretical strategy that has the understanding of the CPS as
a control system and its resource constraints (in the integrated platform).
This will help us relax the resource requirement of any secure CPS staying
within recoverable performance limit.

4. A framework to discover false data related vulnerabilities of a secure CPS.
This will also help provide a formal safety guarantee of any lightweight se-
curity strategy. And we prove that, it can make the CPS resilient enough to
detect and stop any unauthorized intruder, that intends to make the CPS
unsafe by manipulating the sensors and actuator data.

1.3. Contributions
In this thesis, we aim to use formal methodologies in order to achieve the above
objectives, aiming a safe and secure design of resource-constrained CPS. The for-
mal methodologies that we adapt here are quite popular in CPS domain but
we re-purpose such formal techniques in order to take the resource usage into ac-
count while designing safe and secure CPS. Coupling such techniques with control-
theoretic analysis is the key strategy proposed in this thesis. Most of our result

8 1. Introduction

demonstrations are on embedded control-loops, where the timing of control task
execution can be a function of platform non-idealities like delays, jitters etc. Also,
in general for any practical control system implementation, the sensed values are
effected by measurement noises. Since our methodology accounts for such plat-
form specific issues, we characterize such formal techniques as Platform Aware
ones. The major contributions of this thesis are segregated and summarized be-
low.

1.3.1. Safety Verification of CPS Implementation Using For-

mal Methods

Figure 1.3: Developed SMT-Based ECS Verification Tool-Chain

In this work we develop a formal methodology that aims to overcome the afore-
mentioned setbacks in safe implementable CPS design. Being motivated by the
previously discussed disadvantages of existing methodologies, we develop an SMT-
based verification framework to verify the safety of an implementation-ready ECS.
The methodology symbolically encodes repeated interactions of an implemented
control software with a continuous plant model over time, in presence of platform-
level uncertainties. For this, we consider the actual implementation of a nonlinear
control system, i.e. a C code that is executing in closed-loop with the plant dy-
namics under various disturbances, delays, and jitters as inputs. Proposed ‘Safety

1.3. Contributions 9

Verification of Embedded Control Software’ or ‘SaVerECS’ tool-chain then verifies
the safety of this representation (refer to Fig. 1.1). In summary, the following are
our major contributions:
1. Since our tool-chain considers an actual C implementation of the controller,

our tool-chain can potentially verify a significant class of real-life ECS.
2. Our tool-chain handles non-linearity of a closed-loop control implementation by

generating an SMT-based encoding of the closed-loop and then leveraging the
theory of δ-decidability [28] over Real numbers as supported by dReal solver.
Leveraging δ-decidability provides us with a tuning parameter for choosing a
suitable level of precision, a feature that we exploit to handle large state spaces
while preserving the soundness of results.

3. Our tool incorporates semantic support for capturing timing uncertainties, like
delay, jitters, and value-based uncertainties, like sensor noise, to examine their
effect on performance and safety of the closed-loop. By considering these as
separate inputs, we can skip introducing them in the top-level HA model and
retain HA-based plant dynamics as intuitive representations of the original
mathematical models.

1.3.2. A Formal Methodology using Control theory for Re-

source Optimization of Secure CPS

In this work we explore the weakly-hard paradigm of control-scheduling co-design
in order to build a novel control-theoretic and formal methodology that can opti-
mize the resource consumption of a closed-loop control task by inherently utilizing
the weakly-hard constraints. We adopt the idea of representing the consecutive
control executions consisting of skipping or execution of control tasks using the
sequences of ‘1’s and ‘0’s. In our formal representation, a control skipping pattern
thus represents an infinite control computation schedule in terms of such a control
skipping sequence that repeats over time (for an l length pattern it repeats over lh
time). We can segregate such a pattern into multiple control skipping sub-patterns,
each consisting a single ‘1’ followed by i number of ‘0’s, i.e. si = 10i. We assume a
plant-controller closed-loop system Θi+1 captures the system characteristics when
the actual closed-loop system follows a sub-pattern si (i = {0, 1, . . . , qi − 1}, con-
sidering there exist qi stabilizable controllers for the plant). The controller in Θi

has ih sampling period and the plant output is sampled once every sampling pe-
riod by the controller. So, we can imagine the whole system as a switched system
with each of the possible Θis being individual subsystems. Switching within them
would represent the actual system (with no skipped execution i.e. Θ1) following a
control skipping pattern. We must choose the switching strategy properly so that
the performance of this switched system is as desired. That in turn will give us

10 1. Introduction

the control skipping patterns that follow desired performance criteria. This is the
key idea behind this work. An example would be helpful in this context. A closed-
loop system is following a pattern s=110111001 means, (i) there are 6 closed loop
runs and 3 control execution skips in a total run of 9 sampling periods.(ii) As the
pattern switches sub-patterns like 1 → 10 → 1 → 1 → 100 → 1, the closed loop
system changes subsystems like, Θ1 → Θ2 → Θ1 → Θ1 → Θ3 → Θ1.

The performance is provided in the form of a more practical representation of
globally uniformly exponential stability (GUES) called, (l, ε)-Exponential Sta-
bility criterion. A dynamical system is called (l, ε)-exponential stable when
‖x(t+l)‖
‖x(t)‖ < ε ∀t ∈ N, l ∈ N, ε ∈ (0, 1] and x(t) ∈ Rn. This implies that the
error should be reduced by at least a factor of ε in every l sampling periods. We
utilize the mathematical tools used to prove switched system stability. Due to
obvious advantages as discussed in Sec 1.1.3 over popularly used ADT, we utilize
Mode-dependent ADT (MDADT) [85, 93] to establish the switching rules. Using
MLF theoretically we prove a discrete-time switched system following the switch-
ing strategy calculated using MDADT approach, follows the performance criteria.
This gives us a perfect premise to design a recognizer automaton like we do in

Figure 1.4: Provably secure CPS with Resource-awareness

formal language theory. This automaton should only accept the stable control
skipping patterns. Due to hybrid nature of a discrete control system, we build
the recognizer as a timed automaton [4]. This automaton captures all possible
tolerable control skips that abide by the performance requirement of a CPS yet

1.3. Contributions 11

optimize the resource usage. (refer to Fig. 1.4). To summarize, following are the
contributions of this work.

1. We work out an MDADT-based switching strategy for a closed-loop imple-
mentation to switch between different control execution rates and enable
aperiodic control execution. The switching strategy is theoretically proved
to maintain the switching stability based on a desired stability margin using
MLF.

2. We synthesize a recognizer automaton, called Control Skipping Automaton
(CSA), which utilizes the above switching strategy to switch between the
subsystems with different control loop skipping capabilities. Given an expo-
nential stability criteria along with a finite length bound l, this CSA captures
possible sequences of control execution with control skips while satisfying the
given stability criteria in every consecutive l iterations.

1.3.3. Resource-Friendly and Provably Secure CPS Security

Design Using Formal Methods

In this work, we develop a novel methodology that promises to improve the design
of state of the art sporadic IDS [43] commonly employed in CPS. As can be seen
in the Figure 1.5, to quantify the resource consumption by the sporadic IDS, we
formalize and symbolically represent it with two parameters. The first one is how
long the IDS can stay off without harming the system security (ndown) and how
long the IDS must stay on to ensure system security (nup). We define a resilience
metric for any closed loop CPS called minimum attack-length(dmin) to measure the
security level offered by a sporadic IDS. Minimum attack-length is the minimum
number of consecutive control samples that an FDI attacker requires to drive the
system out of the safe region (C2) by injecting false data in sensor and actuator
data transmission, and still remain undetected (a stealthy and successful attack in
minimum effort). Note that, under no-attack situation the controlled system states
stay in the preferable operating region (∈ C1). C, C1, and C2 are regions, defined in
system state space as defined in Figure 1.5. More on this formalization is explained
in Chapter 5. If the attacker aims to make the system unsafe, to stop the attacker
form being successful, we must turn on the (cryptographic security) IDS before the
minimum attack length (i.e. ndown < dmin ⇒ ndown = dmin − 1). This ensures the
safety of the system against FDI. Considering resource-constraints in integrated
platforms, more lightweight but provably secure IDS schemes are always preferred.
Increasing minimum attack length or IDS down time in turn would increase both
the attack resilience and the IDS down-time and help in achieving this goal. This
is the key idea behind this work.

In the previous work, we have developed a methodology to generate control

12 1. Introduction

Figure 1.5: How a Sporadic IDS Operates

skipping patterns that abide by a given performance margin. Such control skip-
ping patterns due to their inherent characteristics incur reduced computation and
communication overhead yet ensure desired system performance. Our proposed
framework here, considers a CPS specification and automatically ranks such con-
trol skipping patterns, based on maximized attack resilience. The synthesis process
also provides us an IDS activation schedule with minimized computational cost
as a by-product. This minimized overhead due to the utilization of control skip-
ping patterns to design IDS activation schedules justifies their resource-friendly
characteristics. Our formal method based methodology verifies the safety of a
secure CPS under FDI attack, to guarantee system resilience. Fig. 1.4 gives a nice
visualization of this work. In summary, the contributions are listed as follows.

1. We present the first work that motivates the use of intentional execution
skips as a control theoretical security measure.

2. In order to formally analyze the robustness of this measure, we build an
SMT-based algorithmic framework for synthesizing successful but stealthy
FDI attack vectors.

3. We leverage this framework for designing sporadic IDS with increased down-
time (or more attack resilience) when compared with existing sporadic IDS
schemes used with period control implementations (i.e., without execution
skips) [43].

4. Since the pattern search space is exponential in pattern length, we develop a
pruning mechanism for classifying control skipping patterns-based on their
offered performance. This step is instrumental in rendering our method
scalable for sporadic IDS design.

5. We establish the usefulness of our approach by considering automotive sys-
tem examples where sporadic IDS solutions generated by our tool set pro-

1.4. Thesis Organisation 13

vided performance and security guarantees similar to previously reported
schemes while consuming less communication bandwidth and computational
resources.

1.4. Thesis Organisation
The thesis is organized into five chapters and following are their summaries.:

1. Chapter 1: This is an introductory chapter, that provides a summarized
overview of how the state-of-the-art work and practices in CPS domain mo-
tivate our work in this thesis, and what are the major contributions of this
thesis.

2. Chapter 2: This is a chapter that provides a detailed overview of the
relevant research work in CPS domain that aims for a safe and secure CPS
design.

3. Chapter 3: In this chapter, we describe the formal methodology, that we
have developed in order to verify safety of a CPS implementation.

4. Chapter 4: This chapter describes the automata theoretical strategy that
we have developed in order to optimize the resource constraints of a secure
CPS.

5. Chapter 5: We describe the formal methodology that we develop in order to
analyze the vulnerability of a secure CPS in this chapter. Then we describe
how to utilize the control theoretical strategy to make the security scheme
more platform-aware.

6. Chapter 6: In this chapter, we summarize our research contributions and
conclude the dissertation with some possible future extensions of this re-
search.

Chapter 2

State-of-the-art Approaches in
Safe and Secure CPS Design

The introductory chapter gives us a brief overview and motivations of the works
done as part of this thesis. The thesis aims to develop methodologies that enhance
safe and secure CPS design with optimized resources. Before we dive into explain-
ing our contributions in details, in this chapter we shall have a detailed discussion
on the state-of-the-art techniques and relevant literature in this domain. This
discussion will help us infer the objectives of the thesis. We start with CPS design
techniques, how they are verified and implemented, and what are the challenges
in this process. Then we discuss the state-of-the-art design approaches that are
intended to handle these challenges. These approaches are developed to overcome
the design flaws or challenging practical situations that can pose threat to the
safety and security of CPS. Finally we draw some remarks on their shortcomings
to highlight our contributions and summarize the work.

2.1. CPS Design and Verification
Designing a CPS involves building its mathematical hybrid model as a first step.
The hybrid design is actually divided into two distinct parts, continuous plant
dynamics and discrete control logic. Before implementation, it must be ensured
that the designed hybrid system operates as desired and does not fail in real-time.
But all scenarios that challenge the application-specific real-time requirements are
impossible to cover by simulating a finite number of test cases. This is where the
formal verification methodologies come useful. Without vigorously simulating the
system it is able to ensure that no scenario potentially exists that may lead to
an undesired situation. Starting from a symbolic representation, by performing
mathematical analysis of the underlying system model, the formal verification
methodologies check whether all possible bounded-time operations of the system
within its finite state-space will follow certain given design specifications. This
way the formal verification methodologies prove validity of a CPS design against

15

16 2. State-of-the-art Approaches in Safe and Secure CPS Design

designer’s specifications. The robustness of a CPS design can be certified in the
presence of certain range of disturbances as well. If the hybrid system model
fails to meet the design specification in certain scenario, then it is considered as
a counter-example. Such discoveries contribute to the required design updates to
ensure safety of the design.

As discussed earlier, most safety-critical CPSs have resource constraints. There
are different subsystems present within such a CPS to handle its different func-
tional aspects. As CPSs are becoming more advanced, the number of subsystems
are increasing, and there are more control tasks to be accommodated in corre-
spondence to them. So, CPSs are becoming more resource-hungry. Each of these
subsystems being a sampled control system the corresponding controller is bound
to sense the output data from physical plant, compute and send the control up-
dates to the system within a valid time-bound (generally the sampling period).
Such control systems that follow certain deadlines are bounded with hard real-time
constraints and most of the safety-critical systems fall in this category. But the
increasing amount of interference due to the introduction of more control-loops in
the implementation platform may lead to deadline misses for safety-critical con-
trol tasks. Mathematical model based design, followed by its translation into a
platform-aware design can most likely handle such situations in presence of of
non-idealities. Control-scheduling co-design [6] techniques come to the rescue by
correlating control algorithms and scheduling effects for a given set of control
tasks. This kind of CPS design ensures that the computations and communica-
tions of the control updates follow the temporal constraints in a shared platform.
But for a huge set of control tasks, such global control-scheduling optimization
does not always scale. In this regard, there are techniques reported that relax the
hard temporal constraints into weakly-hard ones [10] but obviously not without
a safety guarantee. However, as we see, formal verification of safety properties
before implementation of a CPS design is indispensable even in such cases where
weakly-hard constraints need to be checked for satisfaction.

2.2. Related work on Safety Verification of CPS
There exist significant number of tools to verify the hybrid system model based
design of a CPS and also for verifying the software implementation of a CPS. We
are familiar with several model checking tools like CBMC [49], CPAchecker [11]
that are used for formal software verification. They identify several software bugs,
exceptional scenarios like arithmetic exception, overflow, etc. that can lead to
failure during software execution. But typical time/space-bounded software veri-
fication tools are not useful for CPS design verification, because such systems also
consists of continuous-time plant dynamics (physical system component) along

2.2. Related work on Safety Verification of CPS 17

with a discrete-time control software (that governs the plant). So, reachability
analysis tools are used to analyze CPSs as hybrid systems and verify their design.
Starting from any possible initial region in state-space, such tools check whether
the system states reach any unsafe region. Several verification tools are devel-
oped in the past two decades in order to verify safety properties of CPSs within
a bounded time horizon. Simulation-based verification tools like breach [20], S-
TaLiRo [5], C2E2 [22], etc., use robustness semantics of a given system property
as a cost function and try to find falsification traces by rigorous simulation of the
system. Forward reachability analysis tools like Cora [3], Space-Ex [26], Flow* [14]
verify whether a hybrid system ever reaches an unsafe region in its state-space by
over-approximating the symbolic state progression over a bounded time. There
are tools like, iSAT-ODE [25], dReal [29], etc. that symbolically represent this
forward reachability problem as a satisfiability problem with satisfiability modulo
theory (SMT) constraints and solve them to output a counter-example trace in
case the encoded problem is found unsatisfied. Theorem provers like z3 [19], KeY-
maera [70] are also built using similar principles and can verify hybrid systems.
But scalability is an issue when it comes to verification of a large non-linear hybrid
model. But when it comes to verification of a CPS implementation, we are more
interested to verify the plant-controller closed loop than the hybrid design or con-
trol software individually. So aforementioned tools are often utilized as building
blocks to build such verification tool-chains for plant-controller closed loops. Tools
like Sahvy [73], perform safety verification of closed-loop systems, where the plant
is periodically sampled and actuated at discrete intervals by the control program.
Sahvy uses the SMT solver Z3 [19] to generate assertions over the software state
and FLOW* [14] for obtaining the reachable set of the plant, but does not con-
sider the effect of timing uncertainties and disturbances. A closed-loop analysis
of control program is performed on a real-time operating system in [21], but is
limited to only linear systems. Verification of a controller implementation with
the non-linear plant model (which is usually the case in reality), is challenging.
Simulation-driven verification tools [5,20] are reported to scale well for such indus-
trial benchmarks. So, tools like SC3MX use such tools for numerical simulation
of the plant model, coupled with verification tool for symbolic execution of the
control program [96]. To formally verify non-linear systems, one needs to consider
the satisfiability problem over Reals, which is undecidable in general. However,
with a given arbitrary precision, δ > 0, these problems become decidable [30] and
can be solved using δ-approximation SMT solvers like dReal [30]. dReach [46]
and iSAT-ODE [23] are two such tools that perform bounded model checking of
hybrid systems leveraging SMT solvers dReal and iSAT, respectively. Both tools
can handle expressive models with complex non-linear dynamics and report verifi-

18 2. State-of-the-art Approaches in Safe and Secure CPS Design

cation of industrial case-studies. Motivated by such current developments in this
line of work, it is imperative to introduce a framework for safety verification of
an embedded control software (ECS), while it is running in closed loop with a
linear/non-linear plant. The primary reason is to ensure that, the presence of the
platform-originated uncertainties (like, delay, jitter, noise, etc.) will not lead to
an unsafe situation.

2.3. Threats to CPSs and Used Security Measures
The proliferation of network connectivity has increased the applications of CPSs
in today’s connected world. However, increased connectivity unfolds newer secu-
rity loopholes and design vulnerabilities in terms of increased number of possible
attack surfaces for such systems. Over the past few decades we have encountered
many such successful attacks on large industrial control systems (ICSs), power
distribution systems, modern vehicles and unmanned aerial vehicles (UAVs) that
encouraged security enhancements of CPSs. Here we discuss some of those pop-
ular attacks in CPS domain. The stuxnet worms would be a prime example of
such attacks. These were aimed to manipulate the programmable logic controllers
(PLCs) that automated the reactors in the Iranian nuclear powerplant [50] in 2010.
It literally damaged the centrifuges used in Nantanz nuclear power plant. Later
even after its detection, malwares inspired from stuxnet spread over the growing
internet eg. the Duqu malware, even more sophisticated and widespread Flame
malware [80], etc. They thrived on the vulnerabilities of windows operating system
to infect several such PLCs and computers for next few years. The attack posed
by a rogue operative, masquerading as an authorised personnel, on the SCADA
units of the Maroochy water reserve by manipulating the control commands over
the wireless network, caused destruction of the Maroochy river ecosystem and
ended up spilling gallons of wastage over the city [74]. The cyber attacks on the
Ukrainian powergrid in 2012 is also worth a mention while we talk about attacks
on large-scale power distribution systems. Such incidents made engineering pro-
fessionals consider security as a primary component in any automated industrial
control system design. Later Miller and Valasek showed how vulnerable the mod-
ern automotive systems are, by remotely switching-off a Jeep Cherokee on the
highway [59]. There are thorough surveys on all possible remotely accessible at-
tack points [13, 58] in automotive systems. In case of UAVs, there are examples
of several civil GPS spoofing based attacks. Targets are mostly the civilian UAVs
that are used for surveillance [72]. To guarantee the security against these attacks,
a significant security improvement of civil GPS was suggested and is eventually
being achieved in recent times.

The attacks discussed above are mostly network-basedMan-in-the-Middle type

2.3. Threats to CPSs and Used Security Measures 19

attacks, (eg. FDI) and are quite capable of disturbing closed loop safety as well
as degrading the control performance of such systems [79]. The most impor-
tant component that enables such attack surfaces is surely the network compo-
nent. The standard way to secure a CPS against such attacks is by using typical
cryptographic security primitives. As part of global safety standards for CPSs,
the international security standards like IEC 62351 mandate the use of various
intrusion-detection techniques to curb eavesdropping or replay attacks, to enable
authentication only accesses using digital signatures, etc. Security primitives like
Message Authentication Codes (MACs) [64], Message Encryption [64], Physically
Unclonable Functions (PUFs) [33] etc. are being suggested by CPS researchers.
In ICS and power systems Modbus, distributed network protocol (DNP3), etc.
have become de facto standards that focus on raw control data communication
between supervisory control and data acquisition (SCADA) modules. Protocols
like Building Automation and Control Network (BACNet), Modbus, European
Installation Bus (KNX/EIB) are popularly used in building automation systems
(BAS), for energy management and access control, lighting, heating, ventilation
and air conditioning (HVAC), etc. [36,40]. Secure versions these network protocols
like, secure DNP3, ICCP 2.0, EIBSec have been developed [16, 36]. But some of
these protocols are still vulnerable to certain kinds of attacks. Like, modbus is
vulnerable to denial of service (DoS) and false data injection (FDI) type attacks.
BACNet implements a 56-bit DES but still is prone to cyber attacks, because it
does not invalidate old session keys (stored in the server) mandatorily to enable
longer connectivity. Common Industrial Protocols (CIP) requirec obligatory com-
ponent identification objects in ICS network but they use unencrypted multicast
messages during communication which makes them an ideal target for pre-attack
reconnaissance [16,36]. Controller Area Network (CAN), which is heavily used for
transmission of control messages and sensor data in intra-vehicular heterogeneous
communication, also is unprotected against FDI or replay type attacks [41,59,87].
This is why implementation standards like automotive open system architecture
or AUTOSAR, developed by the leading automotive manufacturers in the global
market has also mandated the use of encryption schemes (like 128-bit AES with
truncated CMAC) as part of standardized automotive ECUs [83].

In general, during classic CPS design, efficient communication and control are
primarily focused on and less emphasis is put on the security part. Also, since the
cryptographic schemes incur high computation and communication overheads, the
security protocols/mechanisms can be affordable to handle only critical situations.
A simple 64 bit CAN message packet, when encrypted with 128-bit AES will lead
to 4 number of CAN packets (for detailed explanation see Sec. 5.4.2). Considering
limited on-board resources, unoptimized implementation of such security schemes

20 2. State-of-the-art Approaches in Safe and Secure CPS Design

might sideline the main control objectives of CPSs. So, with growing complexity of
advanced CPS implementations resource-aware secure CPS design is highly sought
after.

Figure 2.1: A Secure CPS

2.4. Related Work on Lightweight CPS Security

Design
We have seen, most of the suggested encryption algorithms are power-hungry or
computation-heavy. For example, on a 96 MHz ARM Cortex-M3-based Electronic
Control Unit (ECU), a scalar PID control law computation takes approximately
5µs while 128-bit MAC computation for a single message takes 100µs [52]. More-
over, not only from the outside an attacker can also target a CPS implementation
from the inside (as it happened in Maroochy water plant) by hijacking the net-
work or certain subsystems over the network. Installing some rogue ECU in a
vehicle or compromised sensor units, computation nodes in ICS, etc. might be
some examples of such insider attack efforts. These kinds of intrusions can cause
serious damage to the system but are hard to catch. Control-theoretic monitoring
systems are proposed to handle such situations. These mechanisms offer basic
safety checks on a CPS while it operates. There are statistical change detection
methods like χ2-test, Cumulative Sum (CUSUM) [34,84], that are implemented to
detect whether the system output/system states are anomalous. These methods
are performed on the system residue to check whether the estimated plant/system
states are manipulated. A threshold, pre-designed depending on the normal sys-
tem operations is used to detect such anomalous data caused by manipulations.
These threshold-based anomaly detectors raise an alarm if the estimation error
crosses the threshold over a single or multiple control loop iterations. Though
such lightweight control-theoretic security primitives can limit the attacks, they
can also be fooled as is shown in [61,78].

2.5. Related Work on Aperiodic Control Executions and Weakly-hard Constraints for
CPS 21

So, (i) standalone use of cryptographic algorithms to secure a CPS is not
resource-friendly and (ii) control-theoretic anomaly/attack detection units are not
sufficient for security either. Therefore, combining both can be a good choice to
build a resource aware Intrusion Detection System (IDS) for CPS implementa-
tions. But there should be a security guarantee to ensure that the safety of CPS
implementation is not compromised in order to reduce the resource usage. This
is because, as discussed earlier, in case of safety-critical CPS, malicious attackers
target to cause substantial damage by making the system unsafe. Fig. 2.1 out-
lines such a generalized secure CPS with both control-theoretic and cryptographic
primitives in place under FDI attack. There have been proposals like [43] for
sporadic usage of such IDS for securing plant controller communication with op-
timized resources, but not with a formal guarantee. In our work, we utilize the
weakly-hard design constraints of a CPS to optimize the resource consumption
by its security scheme. We also explore formal methodologies to ensure that the
resource awareness would not compromise the safety and security of the CPS.

2.5. Related Work on Aperiodic Control Execu-

tions and Weakly-hard Constraints for CPS

As we have discussed earlier, there are safety-critical CPSs like automotive sys-
tems that operate with limited resource. Control-scheduling co-design [6] tech-
niques help CPS designers correlate the controller design in hybrid model and the
scheduling algorithm in the implementation platform. This ensures that the con-
trol algorithm follows the temporal constraints imposed by the system design even
in the presence of timing and data related interference in a shared platform. But
usually there is a huge set of control tasks implemented in such shared platforms.
So, the global control-scheduling optimization might not be scalable. To achieve
scalability and keep the implementation flexible enough to accommodate all the
control tasks the hard temporal constraints are often relaxed into into weakly-
hard ones [10] by the designers. Weakly-hard constraints of a closed loop system
involves analysis of the maximum number of deadline misses allowed by the design
without violating stability constraints. A control system implementation can thus
be designed by analyzing its weakly-hard constraints so that stability requirements
are satisfied even in the presence of platform-level uncertainties. Weakly-hard con-
straints are popularly captured as (m, k)-firm specifications [38]. The satisfaction
of an (m, k)-firm constraint by a control scheduling sequence implies that the max-
imum number of deadline misses in every k consecutive control task instances is
bounded by (k −m). Such constraints have been used to schedule control tasks
more efficiently in [24, 31, 71]. Koren et al. in [47] introduced the idea of skip

22 2. State-of-the-art Approaches in Safe and Secure CPS Design

factor to denote the number of consecutive control executions that can tolerate
single deadline miss or skip. Later, similar concept of packet dropout rate/drop
rate was used to maintain performance in networked control systems (NCS) [12]
and achieve performance vs drop-rate trade off [56]. But these hardly address
the co-design problem in execution platforms. The work in [75] aptly analyzes
the maximum number of allowable drops in an embedded platform. Here the
authors prove stability of such hybrid design implementation using Multiple Lya-
punov Function (MLF) by considering the underlying switched system depending
on presence and absence of drops.

Choosing instance based controller gain and sampling period [6,27,35] to cope
with the available resources can be one way of leveraging such weakly-hard con-
straints provided stable switching sequences can be found using switched sys-
tems properties like, multiple lyapunov functions (MLF) and average dwell time
(ADT) [54, 76]. But such works do not focus on the relative position of exe-
cution skips. For addressing this, the concept of aperiodic executions using se-
quences of ‘1’s and‘0’s (a 1 denotes a deadline is met and a 0 denotes a deadline
is missed) which satisfy stability requirements had been introduced in works like
[10, 32]. These are mostly used to derive stable multi-task schedules. Some re-
cent works [67, 68] solve such problems by building a recognizer to accept well-
performing ‘1/0’ sequences based on their Quality of Service (QoS) or performance.

In this work, we adopt the idea of expressing control executions with sequences
of ‘1’s and ‘0’s while building a recognizer of such sequences. For this, switching
stability based rules decide positions and amount of allowable skips leveraging
weakly-hard constraints in the best possible way. Having such a methodology
would help us contemplate the platform-constraints and the security angles of a
CPS implementation, without having to worry about its performance.

2.6. Summary
Now that we have gone through the state-of-the-art approaches that develop novel
strategies for safe and secure CPS design, we have a clearer overview to find out
the gaps in research and the areas of improvement in this domain. The works done
in this thesis contribute to bridge this gap by developing methodologies for safe
and secure CPS design with optimized resources. Formal methods in cooperation
with the platform constraints is considered as a resolution to achieve this. In the
following chapters we provide a detailed description of our novel methodologies.

Chapter 3

Verification of Embedded Con-
troller Implementations in Safety-
critical CPS

In domains like automotive, healthcare, avionics, etc. most of the CPS used are
safety-critical and Embedded Control Software (ECS) are at the core of those
safety-critical operations. So safety verification of such CPSs is mainly focused
on the safety of controller implementation, because several platform-level uncer-
tainties interfere during the control operations in the shared platforms. We have
briefly stated the objectives, motivations and key contributions of this work in pre-
vious chapters. In this chapter we present our verification methodology in detail.
The tool-chain, Safety Verification of Embedded Control Software (SaVerECS) ba-
sically leverages the idea of δ-decidability [28] for scalable SMT-based verification
of implementable ECS, which is in a closed loop with the plant dynamics under
various platform-originated disturbances, delays, and jitters. Before we go into
those details, let us first formalize the generalised closed-loop operation for any
ECS.

3.1. Background
The plant dynamics of a single-mode discrete control system is given by,

ẋ = f(x, u, w), with flow function f : X × U ×W → X (3.1)

where, x ∈ X ⊆ Rdx is the system state vector, u ∈ U ⊆ Rdu is the control
input vector, w ∈ W ⊆ Rdw is input disturbance vector and dx, du, dw denote the
dimension of state, control input and disturbance vectors respectively. The control
input u remains constant during the sampling period (∆). Due to the presence
of delay/jitters, the actual time-period between kth and (k + 1)th control updates
becomes Tk = tk+1 − tk = ∆ + εk, where the sampling jitter εk ∈ [0, ε] in the kth

23

24 3. Verification of Embedded Controller Implementations in Safety-critical CPS

Figure 3.1: Safety Verification of Embedded Control Software

execution period. We consider the upper bounds on sampling jitter as ε ≥ 0 and
on quantization error for a certain variable as δvar > 0. In the following sections,
we present our proposed methodology starting with the input specifications. To
demonstrate the correctness of our approach, we also provide analysis reports
using our tool on various benchmarks of closed-loop control systems.

3.2. Tool Input Specifications:
The input specification for our tool as shown in Fig. 3.1 is described next.

The Plant model: file contains the plant dynamics specification in HASLAC
format [18]. We consider that the plant can have a finite number of flows,
f1, f2, · · · , one flow fi for each mode si. Flows are given as Ordinary Differen-
tial Equations (ODEs) describing the dynamics in each mode. For each mode si,
there is an invariant Invi and between any si and sj, the switching happens upon
satisfaction of a guard Gi,j. We assume plant specification to be modeled without
any chattering and zeno execution so that the inertia of each mode is suitably
captured by guards and invariants.

The Control Software: is a C-program file which is the controller imple-
mentation generated by the Matlab Embedded Coder toolbox. In earlier stages
of MBD, high-level tools like Simulink/Stateflow are used to generate a plant-
controller model. Once verified to work properly under simulation, this controller
code is generated using inbuilt translators (e.g. Embedded Coder). In our tool-
chain, we use a standard input format of the controller program. It helps to

3.2. Tool Input Specifications: 25

omit any possibilities of datatype mismatch. Plant states and control commands
between plant and controller program are exchanged through two global data-
structures respectively:
(i) INPUT_VAL, containing the current state x(k) and last the updated control in-
put u(k);
(ii) RETURN_VAL containing the new control input u(k+1), following the convention
used in Embedded Coder.

The Configuration File: specifies two types of input parameters (these can
also be input via command line).

1. System and Verification Properties:
(i) Minimum and maximum bounds for system variables: This parameter
accepts desired operating ranges for all system states/outputs as supplied
by the designer as part of the control application or safety property.
(ii) Precision: User can input a desired precision value (δ) for dReal solver
so that it can consider system state values up to this precision while deciding
satisfiability.Note that, this precision value is different from the step size of
ODE solving, which can also be input by the user. Although, in our tool-
chain, it is adaptively chosen by the ODE solver library of dReal by default,
based on the correctness of the estimated intervals in each time step.
(iii) Goal property: Users can provide a desired system safety property.
(iv) Sampling period (∆): the interval between 2 consecutive control up-
dates. (v) Verification bounds: Users can input lower and upper time
bounds to verify the system-safety within that given bound.

2. Uncertainties & Disturbances: This part contains fields for the following
entries.
(i) Sampling jitter and Response time jitter: These are timing uncertainties
for the sensor data to be read by the software and latency for the software
to compute the actuator parameters respectively. We model both of these
collectively to be input as ε to represent timing uncertainty caused in every
control loop iteration.
(ii) Noise: This input specifies a range of environmental disturbance values
(w) affecting the sensor data values,
(iii) Quantization error: This input captures the range of deviations that
may occur due to precision errors in sensed or actuated values caused by
fixed-point controller implementation. For variable var, the quantization
error is denoted by δvar.

26 3. Verification of Embedded Controller Implementations in Safety-critical CPS

Figure 3.2: Tool-flow for Verification of Embedded Control Software.

3.3. Tool Design

Figure 3.2 gives an overview of the different steps, executed by the tool. The overall
functionalities are formalized in Algorithm 1 and step-wise described below.

Algorithm 1 Algorithmic representation of Tool-Flow
Require: Plant Dynamics in HASLAC HA, Controller Program in C Code,

Safety property ϕsafety(x), Jitter Values ε, Set of Disturbances w, Set of
Quantization errors for a variable δvar, Initial range for plant and controller
Init = 〈xinit, uinit, winit〉, Unrolling bound N

Ensure: δ-sat or unsat
1: 〈f(x, u, w),∆〉 ← HASLACParser(HA) . parse plant dynamics
2: CP (u, x)← ControllerParser(Code) . parse C program
3: ϕ← EncodeSMT(f(x, u, w),∆, CP (u, x), ε, w, δ, Init, ϕsafety(x))
4: calldReal(ϕ) . Calls dReal Solver to verify the encoded SMT formula
5: if ϕ is δ-sat then return Counter-Example to Rectify Control/Scheduling

Policy.
6: else return unsat
7: function EncodeSMT(f(x, u, w),∆, CP (u, x), ε, w, δvar, Init, ϕsafety(x))
8: Init : x0

0 ← xinit, u0 ← uinit, w0 ← winit, t0 ← 0 . initialization
9: ϕ← Init(x0

0, u0, w0) . Init() encodes initialisations
10: for k ∈ [0, N] do
11: εk ← nondet([0, ε]) . non-deterministic sampling jitter εk ∈ [0, ε]
12: Tk ← ∆ + εk . starting iteration ε0 is release time
13: wk ← nondet([w−k , w

+
k]) . wk ∈ [w−k , w

+
k] ∈ w

14: C1 : xtk ← xtk−1 +
∫ tk+Tk
tk

f(x0
k, uk, wk) . C1 encodes State Flow

15: δuk ← nondet([δ−u , δ
+
u]) . during actuation,[δ−u , δ+

u] ∈ δvar
16: δxk ← nondet([δ−x , δ

+
x]) . during state estimation, [δ−x , δ

+
x] ∈ δvar

17: xk ← xt=∆
k + δxk

18: C2 : uk+1 ← CP (xk, uk) + δuk . C2 encodes Control Logic
19: x0

k+1 ← xtk . State updation
20: tk+1 ← tk + Tk
21: ϕ← ϕ ∧ C1 ∧ C2

22: ϕ← ϕ ∧ ¬ϕsafety(xtN) . For Safety Property Check
23: return ϕ

3.3. Tool Design 27

1. Model Transformation: From the original multi-mode hybrid automaton,
we generate an equivalent single-mode representation by combining the different
flows with their activation logic in a single formula structure given by the following
equation.

F =
∨
sj

(∨i∈pred(j)(Invi ∧ Gi,j ∧ Invj ∧ fj))

For each mode sj, we consider the predecessor modes ∈ pred(j) and the flow
function fj is activated if and only if the guard Gi,j holds for an instantaneous
transition from some si ∈ pred(j) to sj.

2. Parsing Plant Dynamics: The transformed plant model is parsed using
HASLAC parser as a single-mode automaton object (Line 1). This hybrid au-
tomaton model [39] contains all the flow equations (sets of ODEs) following which
the plant variables evolve, starting from a given initial region, satisfying guards,
and invariant conditions.

3. Parsing Controller Program: The control program is parsed using the
Clang/LLVM library. The program is then translated to LLVM bitcode followed
by conversion into Single Static Assignment (SSA) form for tracking the evolution
of the controller variable with time progress. Using appropriate LLVM code this
representation is converted into an SMT encoding. This SMT encoding essen-
tially is a functionally equivalent logical representation of the controller program,
expressed as CP() (Line 2).

4. SMT Formulation and Verification : Now, we have the parsed plant dy-
namics and controller progression over time in SMT format. The EncodeSMT()

function in the Algorithm 1 automatically creates the SMT formulation combin-
ing them to capture the overall system progression. It generates an assertion ϕ

that contains SMT formula of closed-loop system evolution via plant-controller
communication for N iterations in presence of non-deterministic noise and jitters
following these steps:
(a) The configuration file is parsed at first to collect the system verification pa-
rameters, such as sampling period ∆, unroll bound N , precision δ, timing uncer-
tainty, and disturbance parameters, such as sampling jitter, noise, quantization
errors, etc. The interval Ti is chosen as a non-deterministic clause accounting for
the variability of ∆ due to sampling jitter εk within user-specified range ([0, ε])
(Line11-12).
(b) The closed-loop execution starts with an initial set (x0, u0, w0), i.e. the initial
value ranges of x, u, w respectively (Line 8). A continuous flow from x0

k to xtk in
time Tk is governed by Eqn.(3.1) in every iteration i.e. the plant progresses fol-
lowing, xtk = xtk−1 +

∫ tk+Tk
tk

f(x0
k, uk, wk) (Line 14). Here, xk denotes system state,

uk denotes control input and wk is the non-deterministic process noise (within the

28 3. Verification of Embedded Controller Implementations in Safety-critical CPS

user input range, see Line 13) at k-th sampling iteration. The variable xk super-
scripted with t simply denotes the variable xk at time t. (c) In each sampling step
(∆), the parsed and simplified control program CP() computes the next control
output uk+1 using last updated plant state xtk, i.e. uk+1 = CP (uk, x

t
k) (Lines

17-18). A quantization error value tuple 〈(δx, δu)〉 is non deterministically chosen
from the user input range and added during actuation (Lines 15, 18) and state es-
timation (Lines 16-17). Accordingly, in each iteration of the loop (Line 21), SMT
clauses are created capturing the possible trajectories in each iteration and added
to the formula under construction. Our goal is to check whether the reachable
domain of the final state following the state progression as captured by the SMT
is safe. At the end of N iterations of the for loop, we have an overall forward
reachability formula that is put in conjunction with the negation of desired safety
property ¬ϕsafety (Line 22) to give the final formula ϕ, returned by EncodeSMT().
In symbolic form, the overall formula for N iterations become,

ϕ = Init(x0
0, u0, w0) ∧

N−1∧
i=0

[
(xti = xti−1 +

ti+Ti∫
ti

f(x0
i , ui, wi)) (3.2)

∧ (ui+1 = CP (ui, xi + δxk) + δuk)
]
∧ ¬ϕsafety(xtN)

with clauses for non-deterministic choice abstracted for brevity. We use SMT-LIB
version 2.0 to formulate this assertion, as it has extensions to declare systems
of ODEs [30]. Our tool finally generates a file containing the SMT encoding
of assertion ϕ following the above equation in prefix notation (Line 3) which is
accepted by dReal solver as input. The returned SMT formula, capturing the plant
dynamics, timing, and quantization effects and the actual semantics of control
software, is then passed to dReal solver (Line 4) for a satisfiability check. On
getting δ-SAT decision from dReal, the tool reports that a counterexample exists
in presence of a δ perturbation bound over variables, that takes the system to an
unsafe situation within N unrolling (Line 5). Variables with ranges are handled
symbolically with suitable constraint propagation and pruning. If the tool reports
UNSAT, we have a guarantee that the implemented closed-loop control software is
safe for the assumed condition bounds (Line 6). In general, counterexample traces
provide the system designers useful information about possible implementation
solutions, e.g. updating the mathematical control law or changing scheduling
policy, task mapping, etc. in the embedded platform (Fig. 1.1).

3.4. Experimental Results 29

module thermostat(temperature,u)
 mode loc
 begin
 ddt temperature = 0.5*u - 0.5*temperature;
 end
 initial begin
 set begin
 mode == loc;
 temperature == 69;
 u == 70;
 end
 end
endmodule

max-value = "100"
minmax-bounds = "temperature:[0,100] & u:[20,100]"
minmax-bounds = "chat_detect:[0,10] & .. "
sampling-time = 0.01
release-time = 0.01
sensing-time = 0.001
time-horizon = 3
upper-bound = 10
lower-bound = 1
noise-params = "temperature:[0.2,0.3]=>[7,19]"
disturbance = "temperature:[0.2,0.3]=>[7,19]"
goal = "temperature<55"

#include "thermostat.h"

void* controller(INPUT_VAL* input, RETURN_VAL* ret_val)
{
 // Initialize variables with current plant-controller state
 room_temp = input->state_temperature;
 chatter_detect = input->chat_detect;
 previous_command_to_heater = input->previous_cmd_to_heater;
 ...

 // Decide mode of operation based on plant state
 if(room_temp >= MED_TEMP && room_temp < MAX_TEMP)
 command_to_heater = 2;
 else if(room_temp >= MAX_TEMP)
 command_to_heater = 0;
 ...

 // Chattering logic
 if(off_counter >= 5 || on_counter >= 5)
 chatter_detect = 0;
 if(command_to_heater != previous_command_to_heater)
 chatter_detect++;
 ...

 // Update controller state
 input->cmd_to_heater = command_to_heater;
 input->chat_detect = chatter_detect;
 input->previous_cmd_to_heater = command_to_heater;
 ...
}

(a) Plant Model in HASLAC

(b) Configuration File (c) Control C Program

Figure 3.3: Sample inputs to the tool to verify thermostat model

3.4. Experimental Results

3.4.1. Experimental Setup

We evaluate our approach on a set of well-known safety-critical CPS benchmarks.
The control program is either an abstract version of the actual program or a piece
of generated C-code from the Embedded Coder toolbox. This code is annotated
to satisfy the requirement for our tool-interface. We perform our experiments on
a four-core Intel Xeon(R) 3.50 GHz CPU E5-2637 v4 with 255 GB of RAM.

Table 3.1: Analysis of controllers with implementation uncertainties
[dx =dimension of system, ∆ = Sampling Period, N = the number of iterations, LOC = Line of Code,

δ = Precision and RT =Run Time of the tool-chain]

Benchmark dx ∆[sec] N LOC δ RT[sec] Result

Thermostat 2 0.2 5 72 0.001 60.814 δ-SAT
DC Motor 3 0.02 50 43 0.01 96.67 UNSAT
Yaw-Damper 6 0.05 200 21 0.001 51.95 UNSAT
Powertrain 8 0.01 5 22 0.001 18.43 UNSAT
ACC 1 0.02 21 20 0.01 8915 δ-SAT
Lunar Lander 6 0.128 80 30 0.01 142.36 UNSAT
EMB 4 0.001 23 39 0.001 113.56 UNSAT

The specifications and initial configurations of the benchmarks are taken from the
cited literature and also available in our online repository [1]. The downloadable
repository for SaVerECS [2] provides the detailed parameter settings for each ex-
periment along with disturbance scenarios considered. Our tool web page also lists

30 3. Verification of Embedded Controller Implementations in Safety-critical CPS

resource links for the benchmarks. In all experiments, we use the same sampling
period (∆) and iteration bound choice (N) as used in the reference benchmarks.
The control software codes for the benchmarks are generated through Embedded
Coder and further refined just to satisfy our tool-interface requirements.

3.4.2. System Descriptions and Safety Verification

In thermostat model [96] the control program decides the mode of operation of the
heater (Off, RegularHeating and FastHeating). The controller is also responsible
for preventing chattering, i.e. frequent switching between modes of operation.
The controller acts safely i.e. the temperature never goes below 52◦F within
10 iterations. For the initial temperature range [55, 75]◦F , using SaVerECS we
observe that the temperature drops below the specified safe value (52◦F) when
there is a sampling jitter of 0.1 seconds. Fig. 3.4 plots a counter-example trace to
visualize this unsafe scenario. As we can see from the plot, such a scenario happens
due to delayed actuation of the latest control update caused by the jitter. For this
reason, the system follows the last actuated control logic that mandates it to stay
longer in off state in order to avoid chattering. As a result the temperature goes
below the safe value. The sample input files that our tool-chain needs to verify
the control software in the thermostat are presented in Fig. 3.3.

Figure 3.4: Counter example trace found during verification of thermostat model

DC Motor [96] benchmark has two state-variables, armature current(i) and
angular velocity(θ̇). The verification task is to check whether a forbidden region
defined as i ∈ [1.0, 1.2] ∧ θ̇ ∈ [10, 11] is reachable by the PI control logic. As
observed, this combination of sets in the state space is hard to reach with random
simulations. The SMT encoding and verification procedure of this DC motor
benchmark is provided in details in our tool web page [2].

We have also successfully verified the correctness of the controller in Yaw-
damper for a 747 aircraft [8], for 200 closed-loop iterations. In this case, the

3.5. Concluding Remarks 31

control objective is to damp oscillations in the yaw and roll angle of a 747 aircraft
during flight. The plant variables are: side-slip angle, yaw-rate, roll-rate, and
bank angle. The verification property is to check whether the steady-state mode
of the system maintains the current mode of operation with limited oscillations.

The Powertrain benchmark [42] works with a non-linear controller, that is
verified for 50 consecutive closed-loop iterations in normal-mode. The goal of this
non-linear controller is to keep the air-to-fuel ratio close to an ‘ideal’ stoichiometric
ratio.

In similar veins, we have also performed successful verification of Descent Guid-
ance of a Lunar Lander [92]. Powered descent of the lunar lander is a fully
autonomous task conducted by guidance-navigation-control (GNC) unit using ad-
justments in altitude and engine thrust. The guidance software is executed with
a sampling period of 0.128 seconds with possible jitter of 0.001. The guidance
program computes the required magnitude and direction of thrust by sensing the
current state from sensors like IMU (Inertial Measurement Unit). We perform
time bounded verification for safety property of error-tolerance of velocity during
slow descent phase.

The basic mechanical structure of another benchmark, the Electro-Mechanic
Braking System (EMB) [77] contains DC Motor, Gearbox, Brake caliper, Brake
disk, Brake pedal as an interface to the driver. The safety specification that we
verify demands the contact between caliper and disc should occur within 23ms of
the time when braking is requested.

We also consider an Adaptive Cruise Control (ACC) model in the car-following
mode where the design objective is to track the velocity of the preceding car within
1
10

of a second even in the presence of disturbances. In the absence of uncertain-
ties, all the listed benchmarks are verified to be safe. However, in the presence
of uncertainties, our methodology finds some of them to be safe, while some are
reported as potentially unsafe (i.e. δ-SAT). Moreover, while original safety guar-
antees are over the mathematical control designs, we provide safety guarantees on
control software implementations working under specified uncertainties.

3.5. Concluding Remarks
Using our tool framework, a CPS designer can directly import a control soft-
ware program (coded or auto-generated from MBD flows) along with the plant
dynamics and observe the impact of data and timing discrepancies on the safety
requirements. We plan to extend the tool in terms of scalability and handling of
complex non-linear systems in the future using novel techniques for approximate
reachability analysis.

Chapter 4

Automata-Theoretic Framework
for Performance-aware Aperiodic
Control Execution Synthesis

Implementations of CPSs are becoming heavier as more features are being in-
troduced in them to achieve more utility and autonomy. So, co-design of the
closed-loop system model and the platform needs to be done more carefully to ac-
commodate all those features/subsystems without compromising safety and per-
formance. This is why designers often utilize weakly-hard constraints to reduce
the complexity of this co-design problem to allow aperiodic executions of control
tasks in a crowded implementation platform. In this thesis, our goal is to develop
a resource-friendly safe and secure design of a CPS. As a measure of reducing the
resources consumed by the security schemes, we utilize aperiodic executions. We
have already discussed our motivations behind choosing such a solution and how it
differs from the existing solutions in introductory chapters. This work is regarding
how do we choose a set of aperiodic control executions based on desired system
performance. We build a switched system based automaton which succinctly cap-
tures such aperiodic control executions for given performance criteria. In this
chapter we explain this methodology in detail. First we start with the generalized
system model on which we establish and demonstrate our methodology.

4.1. System Model
Following the usual conventions, we express the plant model as a discrete-time
linear time invariant (LTI) system having dynamics as follows.

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k] (4.1)

where the vectors x[k], y[k], and u[k] define the plant state, the output, and the
control input respectively at time t = kh, for some k ∈ N (here t is the real time at

33

34
4. Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution

Synthesis

Figure 4.1: A closed loop system with skipped control executions

k-th sample and h is the sampling period). The matrices A,B, and C describe the
transition matrix, the input map, and the output map for the plant respectively.
The feedback controller controls the plant output y[k] by periodically adjusting
the control input u[k]. We consider the state-feedback controllers of the form:

u[k] = Kx[k], where K = state feedback gain (4.2)

The control input u[k] is communicated via the communication medium that con-
nects the plant and control unit, and is applied to the plant through the actuators.
Combining the control input calculation in Eq 4.2 with the plant dynamics from
Eq. 4.1 for both plant and controller in a plant-control loop, the dynamics of the
closed loop can be expressed as follows.

x[k + 1] = (A+BK)x[k] (4.3)

Since the control input needs to be periodically adjusted based on current
system states, the controller must sample the system states, compute the control
update and actuate it within a predefined system sampling period. This is for a
single closed-loop control system. In case of practical Networked Control Systems
or Embedded Control Systems there are multiple such control-loops. Controllers
in these closed-loops share the same processor and communication medium to
compute and transmit the control updates to the corresponding plants. So during
real-time operations, such systems face network packet drops while transmitting
control updates or deadline misses while executing control tasks. This causes the
usually periodic control executions to become aperiodic. In case of such aperiodic
control updates/executions, the actuator in the plant side does not receive any
new control update within a sampling interval [k, k + 1). So, the value of the
control input remains the same as it was in the last iteration (last received control
update) i.e., u[k+1] = u[k]. Fig. 4.1 presents real-time operation of such a control

4.1. System Model 35

loop under control execution skips.

Following [32] we can represent both plant and controller with their corre-
sponding state-space equations to capture the system progression during aperiodic
control executions. Similar to the state space equation in Eq. 4.1 we can define
progression of plant and controller like the following.

xc[k + 1] = Acxc[k] +Bcy[k], u[k] = Ccx[k]

xp[k + 1] = Apxp[k] +Bpu[k], y[k] = Cpx[k]
(4.4)

Here, Ac, Bc, Cc are characteristic matrices and xc is state vector of controller. And
Ap, Bp, Cp are characteristic matrices and xp is state vector of plant. Notice that,
as the plant and controller are running in closed-loop, the plant output y is used as
a control input to the controller and the control input to the plant u is taken from
the output from the controller dynamics. Comparing Eq. 4.4 with Eq. 4.2 we can
also see Cc = K. Considering the state vector of the plant-controller closed-loop
as X = [xTc , x

T
p]T , we can define usual progression of the closed-loop system as the

following.

X[k + 1] = A1 X[k] , where A1 =

[
Ap BpCc

BcCp Ac

]
(4.5)

Since during an aperiodic control execution instance (like deadline miss) u[k +

1] = u[k], following the controller equation in Eq. 4.4 we can write xc[k + 1] =

xc[k], u[k + 1] = Ccxc[k + 1] = Ccx[k]. So during a skipped control execution
Ac = Ic and Bc = Oc, where Ic and Oc are identity matrix and zero matrix with
same dimensions as Ac and Bc respectively. So during a skipped control execution
the closed-loop system progresses like the following.

X[k + 1] = A0 X[k] , where A0 =

[
Ap BpCc

O Ic

]
(4.6)

The weakly hard constraints of a control system provide a tolerable limit to
such skipped control executions based on the system performance. Such represen-
tations are useful to evaluate the system performance under periodic or aperiodic
control executions. While traditional control theory studies execution drop/loop-
skips from a robustness perspective, we look at this from a resource saving per-
spective. From that angle, we provide a structured theory for generating aperi-
odic control execution schedules which may help in resource aware control task
scheduling. But to quantify the performance of closed-loop system it is important
to understand how an efficient controller design intends to achieve certain perfor-

36
4. Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution

Synthesis

mance guarantees. The following section explains the performance metrics based
on which a controller is designed for a CPS.

4.1.1. Control Design and Performance Metrics

A control design metric represents the control objective while designing the con-
troller. One such design metric that we often use is settling time. It is the time
needed by the system output to start staying around the reference value (e.g.,
within 2 % error band). Hence, the controller has to be designed in such a way
that the given settling time requirement is always met. On the other side, the con-
trol performance is the measure of quality of control (QoC), i.e., how efficiently the
design requirement is met. In this work we consider Linear Quadratic Regulator
(LQR)-based controller design technique. So we use the LQR cost function J as
the performance metric given by,

J =
∞∑
k=0

(xT[k]Qx[k] + uT[k]Ru[k]), (4.7)

[7], with Q < 0 and R � 0 being symmetric weighing matrices capturing the
relative importance that the control designer can give to the state deviation and
control effort respectively. Lower the LQR cost better the performance.

In this work, we consider exponential stability as a performance driven stability
metric. Given a settling time requirement we can express it in terms of a desired
minimum exponential decay within the mentioned settling time duration, so that
the system output stays within a 2 % error bound of a desired reference. Theo-
retically we express it using the notion of Global Uniform Exponential Stability
(GUES) criterion as defined below [32].

Definition 1 (Globally Uniformly Exponentially Stable). The equilibrium
x = 0 of the system in Eq. 4.1 is globally uniformly exponentially stable (GUES)
under certain switching signal π[k] if for u[k] = 0 and initial conditions x[k0], there
exist constants α > 0, 0 < δ < 1 such that the solution of the system satisfies
||x[k]|| ≤ αδ(k−k0) ||x[k0]||, ∀k ≥ k0 where ||.|| is the vector norm. �

We use a practical finite length representation of GUES criterion called, (l, ε)-
Exponential Stability criterion as defined below [82].

Definition 2. (l, ε)-Exponential Stability Criterion: A dynamical system
is called (l, ε)-exponential stable when ‖x(t+l)‖

‖x(t)‖ < ε ∀t ∈ N, l ∈ N, ε ∈
(0, 1] and x(t) ∈ Rn. This implies that the error should be reduced by at least
a factor of ε in every l sampling periods s.t. exponential decay rate of the system
is ln 1/ε

l
. �

Such a representation of system stability constraint helps us quantify the con-

4.2. Formalization of Switching between Control Executions and Control Skips 37

trol performance of a closed-loop system. As part of this work we intend to build a
methodology that can select a set of aperiodic control executions which respect a
desired performance criteria of the system. We consider (l, ε)-exponential stability
as performance criteria for a closed-loop system provided as input for this process.

4.2. Formalization of Switching between Control

Executions and Control Skips
As we have discussed in Chapter 2, there exists plenty of literature to theoreti-
cally limit deadline miss or network packet drops by analyzing weakly hard con-
straints [51, 60, 69, 81]. In this work, we intend to capture all possible deadline
misses that can be allowed staying within the performance margin for a CPS im-
plementation. To attain this via an automata-theoretic strategy we formalize the
notion of aperiodic control executions.

Till now from our discussion on system modeling we have seen during deadline
miss of a control task execution or a control packet drop during transmission, the
closed-loop system is basically switching between combinations of system dynamic
matrices A1 and A0, based on control law execution and skipping of control exe-
cution respectively. Hence, such a system can be represented as a switched LTI
system where, different combinations of {A1, A0} represent different subsystem
dynamics that we switch between while following such a defined sequence of con-
trol law execution or control execution skips. The following definition formalizes
such sequences.

Definition 3 (Control Skipping Pattern). An l length control skipping pattern
for a given control loop is a sequence ρ ∈ {0, 1}l such that it can be used to
define an infinite length switching signal σ, repeating with period l defined as,
σ[k] = σ[k + l] = ρ[k%l],∀k ∈ Z+.

A repeating control skipping pattern thus represents an infinite computation
sequence/schedule in terms of well defined periodic control loop skipping. The
closed loop dynamics of the system thus switches between Eq. 4.5 and Eq. 4.6 and
becomes

x[k + 1] = Aρ[k%l]x[k], ∀k ∈ Z+ (4.8)

As an example, corresponding to the control execution pattern ρ = 11001, the
closed loop system evolves as:

x[5] = A1x[4] = A1A0x[3] = . . . = A1A0A0A1A1x[0]

38
4. Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution

Synthesis

Definition 4 (Control Skipping Sub-sequence). A control skipping sub-
sequence of an l-length control skipping pattern ρ[1 . . . l] is an i-length sub-string
of ρ having the form 10i−1. In other words, the sub-sequence starts with 1 and is
followed by (i − 1) number of 0s. Since the control skipping pattern is cyclic, if
ρ[j] = 1 for some j, 1 ≤ j ≤ l, then the subsequent (i − 1) number of 0s are at
ρ[(j + 1)%l], . . . , ρ[(j + i− 1)%l] respectively, for some i ∈ {1, . . . , l}. �

The primary idea of pattern-based control loop skipping of the controller is as
introduced in [32]. But in this work, we represent these control skipping patterns
using Control Skipping Sub-sequences, so that we can model a system follow-
ing such a Control Skipping Sub-sequence as a subsystem component of desired
switched system setup. A switching signal σ for the control loop is a sequence
over the subsystems corresponding to these Control Skipping Sub-sequences.

Example 4.2.1. The control skipping pattern ρ = 01101110 has the con-
trol skipping sub-sequence, 10, at the position (ρ[3], ρ[4]), and 100 at position
(ρ[7], ρ[8], ρ[1]) with the leading 1 at ρ[7]. Note that, corresponding to each such
control skipping sub-sequence, 10i−1, the controller executes once followed by con-
tinuous evolution of the plant over a time window of i×h instead of h, where h is
the sampling period using which the controller is designed. Therefore, for a control
skipping pattern, ρ[1, 2 · · · l] = 10i1−110i2−1 · · · 10iM−1, of length l = i1+i2+. . .+iM

(i.e., ρ has total M control skipping sub-sequences), the dynamical system behaves
like a switched system following Eq. 4.8 having evolution of the form:

x[l] =(A0)iM−1A1 . . . (A0)i2−1A1(A0)i1−1A1x[0] (4.9)

Note that, a control skipping sub-sequence, 10iq−1, of ρ essentially represents a
subsystem, Θiq , where the closed loop in Θiq consists of a plant sampled at iq × h
and a controller designed with the sampling period of h (refer Fig. 4.2). Thus Θiq

may either be stable or unstable.

Hence, in this setting, the switched system has both stable and unstable sub-
systems. In order to guarantee exponential stability during switching among such
subsystems, we follow stability analysis using the notion of Mode Dependent Av-
erage Dwell Time (MDADT) [94] which has been proved to be advantageous
(see [86,90,94]) over average dwell time [76], [88] approach for such switched sys-
tems.

Figure 4.2: Realization of Control Skipping Patterns as Switched System

4.3. Stability Analysis of Switched Systems using MDADT Approach 39

4.3. Stability Analysis of Switched Systems using

MDADT Approach
Let, Θ = {Θ1,Θ2, . . . ,Θm} be a set of total m number of subsystems where
any subsystem Θi represents the dynamics of the control skipping sub-sequence
10i−1. Without loss of generality, we assume S = {1, 2q} and U = {q + 1, q +

2, . . . ,m} to be the set of indices of stable and unstable subsystems, respectively.
Note that here we assume that first q number of subsystems are stable while rest
are unstable. We present the detailed stability analysis for a switched system
comprising subsystems in Θ in a discrete-time setting. Consider a switched linear
system of the following form:

x(k + 1) = Aσ(k)(x(k)) (4.10)

where σ is a switching signal that takes its value from the set {1, 2, . . . ,m} with
m as the total number of subsystems. σ(k) = i signifies that at k-th sampling
instance the system is in i-th subsystem Θi. We define Nσi(k

′, k) as the number
of switching to Θi within k′-th and k-th switching instances. Thus,

Nσi(k
′, k) ≤ N0i + Ti(k

′, k)/τdi (4.11)

Where, N0i is chattering bound for Θi, Ti(k′, k) is total time spent in Θi, and τdi
is the MDADT for Θi.

Let there exist a continuously differentiable, positive definite function, Vi(x(k)),
and class K∞ functions κ1, κ2, such that Vi : Rn → R, and for any sampling
instance kp, if σ(kp) = i and σ(k−p) = j, where k−p < kp, i 6= j, i, j ∈ {1, 2, . . . ,m},
then the following conditions hold ∀i,

κ1(||x(k)||) ≤ Vi(x(k)) ≤ κ2(||x(k)||) (4.12)

∆Vi(x(k)) ≤ αi Vi(x(k)) and for some αi 6= 0 (4.13)

Vi(x(k)) ≤ µi Vj(x(k−)) ∀j s.t. i 6= j for some µi > 1 (4.14)

In other words, for all subsystems there exists a radially unbounded, positive
definite, and continuously differentiable function Vi respecting the definition of
Multiple Lyapunov Function (MLF) [54]. In order to ensure Lyapunov stability, in
Eq. 4.13, ∀i ∈ S, −1 < αi < 0 and ∀i ∈ U , αi > 0. Following the stability proofs
introduced in [94], next we present the MDADT analysis for different subsystems
based on the given performance criteria of the system.

Claim 1. Given a switched system of Eq. 4.10 having subsystems with MLF sat-

40
4. Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution

Synthesis

isfying Eq. 4.12-4.14, for each subsystem, there exists a lower bound of the corre-
sponding MDADT so that the switched system is globally uniformly exponentially
stable (GUES) with a desired margin of γ supported by all stable subsystems.

Proof. From Eq. 4.13 we can write for k ∈ [kp+1, kp) using Eq. 4.14,

Vσ(k)(x(k)) ≤ (1 + ασ(kp))
Tσ(kp)(kp,k)µσ(kp)Vσ(k−p)(x(k−p)) (4.15)

Unwinding Eq.4.15 over the switching interval [k0, k) will have the parameters
µi and αi repeated in the above equation as many times that subsystem will be
switched into. Because they are properties of the subsystem Θi, . Hence, using
the definition of MDADT in Eq.4.11, we can re-write the above equation as,we
get,

Vσ(k)(x(k)) ≤ µ
Nσ(p)(kp,k)

σ(k) (1 + ασ(p))
Tσ(p)(kp,k)µ

Nσp (kp−1,kp)

σ(kp) (1 + ασ(p−1))
Tσ(p−1)(kp−1,kp)

. . . µ
Nσ(0)(k0,k1)

σ(1) (1 + ασ(0))
Tσ(0)(k0,k1)Vσ(k0)(x(k0))

≤ µ
Nσi (k0,k)

σ(k) (1 + αi)
Ti(k0,k) . . . µ

Nσ0 (k0,k)
0 (1 + α0)T0(k0,k)Vσ(k0)(x(k0))

≤
m∏
i=1

(
µ
Nσi (k0,k)

i (1 + αi)
Ti(k0,k)

)
Vσ(k0)(x(k0))

≤ exp
{ m∑

i=1

N0i lnµi

}∏
i∈S

(
(1 + αi)µ

1
τdi
i

)Ti(k0,k)∏
i∈U

(
(1 + αi)µ

1
τdi
i

)Ti(k0,k)

If we set,

T− =
∑
i∈S

Ti(k0, k) , γ− = max
i∈S

[
(1 + αi)µ

1
τdi
i

]
(4.16)

T+ =
∑
i∈U

Ti(k0, k) , γ+ = max
i∈U

[
(1 + αi)µ

1
τdi
i

]
, (4.17)

K = exp
{ m∑

i=1

N0i lnµi

}
then for desired stability margin of γ,

(γ−
T−

+ γ+T
+

) ≤ γ(k−k0) , (0 < γ− < γ < 1) (4.18)

which implies, Vσ(t)(x(t)) ≤ K(−γ−T
−

+ γ+T
+

)Vσ(k0)(x(k0)) (4.19)

≤ Kγ(k−k0)Vσ(k0)(x(k0)) (4.20)

Since γ− < 1 and ∀i ∈ S, 0 > αi > −1⇒ 1 > (1 + αi) > 0

µ
1
τdi
i ≤ 1

(1 + αi)
⇒ τdi ≥

lnµi
| ln (1 + αi)|

(4.21)

4.4. Recognizer for stable control loop skips 41

Similarly, from γ+ > 1 and ∀i ∈ U , 0 < αi ⇒ 1 < (1 + αi),

µ
1
τdi
i ≥ 1

(1 + αi)
⇒ τdi ≥ −

lnµi
ln (1 + αi)

(4.22)

Note that T− and T+ represent the total running time into the stable and unstable
subsystems, respectively. Therefore, from Eq. 4.18, we have the dwell time ratio,
v, between the stable and unstable subsystems as,

v =
T−

T+
≥ ln γ+ − ln γ

ln γ − ln γ−
(4.23)

From Eq.4.19 and the definition of GUES [53], we can conclude that Vσ(k)(x(k))

converges to zero with the desired margin of γ as sampling instance k →∞, and
consequently we get the lower bound of the MDADT τdi for i ∈ {1, 2, . . . ,m}.

Relating with Exponential Stability : To achieve a desired decay rate γ while
switching between multiple subsystems, we can calculate required MDADT using
Eq. 4.21. For that, in accordance with Theorem 1, we need to calculate µi solving
following LMI s assuming the existence of the positive definite matrix Pi and given
values of αi, ∀i ∈ {1, 2, . . . ,m}:

ATi PiAi − Pi ≤ αiPi,

Pi ≤ µiPj, ∀j ∈ {1, 2, . . . ,m}, i 6= j,

Pi > 0, µi > 1

(4.24)

Till now, we have devised a way to represent the control execution skips as
a switched system. We have also devised a strategy to derive a stable switching
sequence in that switched system using MDADT. In next section we proceed
to model a recognizer automaton from the designed switched system, that can
generate stable control skipping sequences in form of stable switching sequences.

4.4. Recognizer for stable control loop skips
For a control loop with sampling period h, we create a timed automaton, with
maximum m allowed locations, that recognizes (l, ε)-exponentially stable control
skipping patterns. Here, the locations of the automaton represent the subsys-
tems, Θ = {Θ1, . . . ,Θm}, as defined earlier. Each subsystem Θi performs the
execution of a sub-sequence 10i−1, in the automaton at location Θi (symbol being
overloaded). This intuitively denotes the control loop being executed or skipped
based on the underlying pattern and the decision is taken with the elapsing of
every h amount of real time.

42
4. Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution

Synthesis

Let Θ = S ∪ U , where S = {Θ1, . . . ,Θq} denotes the set of q stable subsystems
and U = {Θq+1, . . . ,Θm} denotes the set of (m − q) unstable subsystems (i ∈
[1,m]). Given an (l, ε) performance metric, the corresponding exponential decay
rate γ is derived first. Using this in Eq. 4.21 and Eq. 4.22, we can calculate
the MDADT τdi for each such subsystem Θi ∈ Θ. Similarly from Eq. 4.23, we
have v as the dwell time ratio. Our proposed timed automaton maintains, 1) the
required dwell time τdi at every location, 2) the required dwell time ratio v while
switching to and from unstable subsystems. These in turn ensures GUES with
desired margin of γ in all possible runs of the timed automaton. We describe some
of the design considerations of the automaton as given below.
1. For each location Θi, we have outgoing transitions executing once in every ih
interval. The number of times a self loop is executed for a location is stored in an
integer variable x which gets reset to ‘1’ with switching to a different location.
2. The overall length of the run is stored in an integer variable y which gets
updated using x values during location switch.
3. The automaton monitors a run for a window of length zh with the integer z
being a design parameter. This means y is reset after every zh time interval. Such
a requirement of finite window monitoring is needed to ensure the dwell time ratio
while switching locations. For this, the automaton uses two real variables p and
p′ to count the total time spent in stable and unstable subsystems, respectively in
every zh interval. c and c′ are clocks used to keep track of global and local times.
As per the definition, p and p′ must satisfy, p+p′ ≤ zh and p ≥ vp′. Solving these
we get the upper bound on allowable unstable location traversal to be p′ ≤ zh

1+v

which is enforced by the automaton. The stability or instability of a location is
captured in Boolean variable s.

Definition 5 (Control Skipping Automaton). A Control Skipping Automaton
(CSA) for a control loop with sampling period h and monitoring length z is an
extended timed automaton (following [9]), where T = 〈L,Θ0, C, V, E , Inv〉 such
that,

• L = Θ ∪ {Θ0} = {Θ0,Θ1, · · · ,Θm} is the finite set of locations mimicking the
underlying subsystems;

• Θ0 is the initial location; C = {c, c′} is the set of clocks;
• V = {x, y, p, p′, s} is a set of variables with types and activities as described
earlier;

• Inv(Θi) = (InvisamplingT ime, Inv
i
dwellRatio, Inv

i
length) is the invariant tuple at i-th

location/subsystem, where –
– InvisamplingT ime = [c′ ≤ hi] is to ensure the sampling time between consec-

utive self loops,
– InvidwellRatio = [(p′ + shxi) ≤ zh

1+v
]is to ensure that dwelling ratio is getting

4.4. Recognizer for stable control loop skips 43

maintained in the current location, s = 0/1 for stable/unstable subsystem,
– Invilength = [(p + (1 − s)hxi + p′ + shxi) ≤ zh) ∧ (c ≤ zh)] when i 6= 0,

[y == 0 ∨ y == z] otherwise. This is to ensure the desired length is never
exceeded while staying in current location. Θ0 should be reached only at 0

or every zh time interval to start monitoring stability,
• E ⊆ L × G ×R× L is the set of transitions/edges. A transition from Θi to Θj

is denoted by, Eij = (Θi,Gij,Rij,Θj) ∈ E, where Gij represents guard condition
and Rij is the reset map.

�

The guard conditions are defined as,

Gij =

{[c == 0]}, when i = 0

{Gijlength ∧ G
ij
minDwell ∧ G

ij
toUnstable}, when i 6= 0

• Gijlength :

[(z − y − xi) ≥ j], when i = j

[(z − y − xi) ≥ d
τdj
h
e], when i 6= j

is to ensure that a destina-

tion location is always chosen such that in every zh interval, MDADT can
always be maintained. Essentially this checks whether after staying in Θi

for (y + xi)h time, there is yet enough time left to satisfy the MDADT re-
quirement at destination Θj. In case of self loops, it is sufficient to check
whether there is allowable gap remaining for another repetition.

• GijminDwell : [(x > d τdi
hi
e) ∧ (c′ == hi)], when i 6= j and [c′ == hi] otherwise.

Here, hi is the sampling time of the plant in Θi. Using the self loop execution
count in x, we ensure there are enough self loop executions in any Θi to at
least cover its MDADT, before it transits to another location Θj.

• GijtoUnstable : [(z − y − xi) ≥ ((1 + v)j − (p−vp
′

h
))],

(∀i, j, when 1 ≤ i ≤ m and q < j ≤ m) and true otherwise. If destina-
tion Θj is a location representing an unstable subsystem, then only ensuring
whether we can afford switching to Θj to maintain GUES, is not enough.
The automaton also needs to ensure whether it still maintains a ratio of
v between total time spent in stable locations and unstable locations af-
ter leavingΘj. Note that p−vp′

h
is the additional length contributed by sta-

ble subsystems after compensating all instabilities before entering Θj. This
along with Inv(Θj) ensures that the dwelling ratio is maintained inside the
z length.

44
4. Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution

Synthesis

The reset maps are defined as,

Rij =

{Rij

selfLoop}, when i = j,

{Rij
length ∧R

ij
dwellRatio ∧R

ij
stability ∧R

ij
dwellT ime},

when i 6= j

• Rij
selfLoop : [x := x+ 1, c′ := 0] is used to keep count of self loop executed in any

location,
• Rij

length : [y := y + xi, c′ := 0] when i 6= 0 and [y := 0, c := 0, c′ := 0] when
i = 0 is used to update the length of the pattern visited up to last location, as
monitored for zh time,

• Rij
dwellRatio : [p := p+(1−s)hxi, p′ := p′+shxi], when i 6= 0 and [p := 0, p′ := 0]

when i = 0 is used to update the time spent in stable and unstable subsystems
in every zh time,

• Rij
stability : [s := j−1

q
] is used to update s based on whether the destination

location refers to stable or unstable subsystems.
• Rij

dwellT ime : [x := 1] is used to update the self loop count for next location.

Θ1 Θq

Θm

G1q;R1q

Gq1;Rq1

G
1
m

;
R

1
m

G
m

1
;
R

m
1

Θq+1

Gmq+1;Rmq+1

Gq+1m;Rq+1m

Unstable states

Inv1 Invq

Invm Invq+1

Stable states

G
q
+

1
q
;
R

q
+

1
q

G
q
q
+

1
;
R

q
q
+

1

Gqq;Rqq
G11;R11

Gmm;Rmm Gq+1q+1;Rq+1q+1

Θ0

Figure 4.3: Schematic of CSA Realized for a system with m Stabilizable Con-
trollers

From a language theoretic point of view, we may designate the locations for
stable subsystems as the accepting states of the automaton. In Fig. 4.3, we provide
a schematic structure for such control skipping timed automaton realized with m
stabilizable controllers (only 1st and qth locations, (q + 1)th and mth locations are

4.4. Recognizer for stable control loop skips 45

highlighted.) A control execution schedule satisfying the original (l, ε) require-
ment is essentially any cycle in such automata. As an example, consider such an
automaton recognizing control skip patterns for a control system with sampling
period 1 sec. The automaton has locations Θ1, Θ2, Θ3 representing subsystems
with control skip sequences 101−1, 102−1, 103−1 respectively, with the first two be-
ing stable and the last one being an unstable subsystem. Also, let the dwell time
for Θ1, Θ2 be 3 and 2 sec respectively while the dwell time ratio for Θ3 be 1.5.
Note that for this automaton, the cyclic trace ‘11111010’ is a control skipping
pattern of length 7, generated by switching between stable subsystems Θ1 and
Θ2. On infinite repetitions, this gives a control schedule. Also, the cyclic trace
‘10011110’ is a control skipping pattern of length 8, generated by switching be-
tween all three subsystems. This sequence spends 3 sec in an unstable subsystem
Θ3 and 5 sec in the stable subsystems Θ1,Θ2. Hence, it satisfies the dwelling
ratio requirement of 1.5 and also the dwell time requirements of stable subsystems
Θ1, Θ2. In Fig. 4.3 we provide a schematic structure for such control skipping
automaton realized with m stabilizable controllers (only 1st and qth stable states,
(q + 1)th and mth unstable locations are highlighted.

Example 4.4.1. Say, given an (l, ε) and a control loop, with controller sampling
time 1 second, we have 2 locations representing stable subsystems Θ1 and Θ2 with
minimum dwell time values 3 seconds and 2 seconds. We have another unstable
location Θ3 which represents an unstable subsystem. Dwell time ratio(v) for
these set of subsystems is 2. As described earlier, 101−1, 102−1, 103−1 are the sub-
sequences generated while we go through Θ1,Θ2 and Θ3 respectively.

• ‘1111010’is a control skipping sequence of length 8, generated from the de-
scribed Control Skipping Automaton T , by switching between only stable sub-
systems. Notice that, each of the stable subsystems follow their corresponding
dwell times, i.e. Θ1 repeats d3/1e = 3 times and Θ2 repeats d2/1e = 2 times.
On infinite repetitions, this gives a control schedule.

• ‘1001111010’is a control skipping sequence of length 10, generated from Con-
trol Skipping Automaton T switching between stable and unstable subsystems.
Here, following the dwell time ratio = 2 the switched system stays twice the
time it dwells in an unstable subsystem, i.e. after 3seconds in Θ3 spends 6
seconds in Θ1 and Θ2 (stable subsystems). Duration of stays in these stable
subsystems follow their minimum dwell time as shown in the previous ex-
ample (3 seconds in Θ1 and 2 seconds in Θ2). This pattern also generates a
control execution schedule on infinite repetition.

Now we formalize such cyclic traces in CSA that can generate control skip-
ping patterns with performance-guarantee. On repetition such control skipping
patterns generated from CSA traces form control skipping schedules (CSS). Any

46
4. Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution

Synthesis

trace ψ = Θj1
i1
· · ·Θjk+1

ik+1
of CSA T contains a CSS of periodicity l if the following

conditions hold.

1. jp.ip.h ≥ τdp , ∀p ∈ [1, k+ 1], where h is the sampling period, τdp is MDADT
of ip-th subsystem denoted by Θip and jp denotes the number of times sub-
system Θip is repeated in the trace ψ.

2. ∃i′ ∈ [1, k] such that Θi′ = Θk+1 i.e. the trace ends at a subsystem that
is visited earlier. This condition signifies cyclical characteristic of a trace
starting from anywhere within it.

3.
k∑

p=i′
jp.ip = l. This condition denotes that the length of the repeating trace

is l. Here ip is the control skipping sub-sequence length corresponding to a
subsystem Θip (refer Def. 4) and jp is the number of times it is repeated.
So, jp × ip would be the contributing length by Θip-th subsystem. We get
the total length of the trace when we sum the contributing lengths for each
subsystem from the cyclic trace i.e. [i′k].

Following the above discussion a CSS (Pat(ψ))ω is generated from an in-
finite repetition of a trace ψ = Θj1

i1
· · ·Θjk

ik
in the Control Skipping Automa-

ton (CSA) T , where Pat(ψ′) is the corresponding control skipping pattern
generated from ψ. Similar to Example 4.2.1 the CSS can be represented as,
(Pat(ψ))ω = ((10i1−1)j1 · · · (10ik−1)jk)ω. As discussed earlier, here 10i1−1 signi-
fies the sub-sequence corresponding to the subsystem Θip and jp is the number of
repetitions based on dwell time of that subsystem.

4.5. Results

In this section, we demonstrate how control skipping patterns of desired length
can be generated using the CSA, when provided with certain performance criteria
for a CPS. The CPS under test is a power generation system [79]. We need
to generate aperiodic control skipping patterns or schedules which abide by the
(l, ε)-exponential stability requirement of (10, 0.045). The states of the discrete
LTI power generator system are phase-angle θ and frequency deviation ω. The
state space representation of the system is similar to Eq. 4.1 with following system

dynamic matrices. A =

[
0.66 0.53

−0.53 0.13

]
, B =

[
0.34

0.53

]
, and C =

[
1 0

0 1

]
. An

LQR controller is designed to keep the frequency deviation minimum (reference
is 0) and power flow within the line ratings (i.e. contain the phase angle within
[−0.1, 0.1]). So both the system states are considered as outputs. A remote control
unit calculates necessary normalized mechanical force (control input u) that is to
be exerted to the power generator in order to achieve this control objective. The
controller samples the system outputs once every h = 1sec sampling period and

4.5. Results 47

Figure 4.4: Execution of a Pattern Generated Using CSA for Power Generator

provides a control update to keep the system stable. The (l, ε)-exponential stability
requirement with l = 10, ε = 0.045 is obtained from the requirement of containing
system outputs within a 10% error band from the zero reference within 10sec.

Table 4.1: MDADT for all subsystems in T
Control Skipping Dwell Self loop Subsystem
sub-sequence time Count Sampling Time

(10iq−1, iq ∈ [1, 5]) τdi(s) d τdi
hi
e hi (s)

1 2.189 3 1
10 1.903 1 2
100 2.151 1 3
1000 3.366 1 4
10000 2.713 1 5

From the given (l, ε) stability requirement of (10, 0.045), we can derive the re-
quired minimum exponential decay rate of the system as γ = 0.033. We consider 5

controllable subsystems for the given system to build the CSA (in a similar way as
we choose 3 subsystems in Example 4.4.1). Sampling periods and corresponding
control skipping sub-sequences of these subsystems are mentioned in Column 4
and Column 1 of the Table 4.1 respectively. Unlike Example 4.4.1, all of these
subsystems are stable but might not perform within the given performance mar-
gin. We first calculate the required parameters (µi and a positive definite matrix
Pi for i-th subsystem) for MDADT derivation based on the performance criteria
(i.e. based on the system γ and exponential decay parameter αi for i-th sub-
system) by solving the LMIs in Eq. 4.24. Using these parameters and following
Eq. 4.11 we calculate the MDADT τd and minimum number of self loop execution

48
4. Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution

Synthesis

required to meet τd for each subsystem, as reported in Column 2 and Column 3
of Table 4.1 respectively. Now we develop the CSA T with the set of locations
L = {Θ0,Θ1, · · · ,Θ5} where Θ0 is the initial location. We calculate the guards,
resets and invariant conditions for the CSA following the Definition 5. From any
cyclic trace of this CSA now we can generate a finite set of all possible CSSs or
the control skipping patterns corresponding to them that follow the given stability
margin.

We run the power generator system following such a control skipping pat-
tern generated using the CSA and plot the system states in Fig. 4.4. The green
lines denote the desired exponential stability margin within which the controlled
system states should operate in order to follow the given (l, ε)-stability criteria.
10000101011111 is such a 14 length pattern generated from the CSA. Notice that,
to compensate the effect of poorly performing subsystems/locations like 10000

(w.r.t the performance margin) 3 minimum repetition of well-performing subsys-
tem/locations 1 are followed. This follows the derived self loop counts as in the
Table 4.1. We observe, while following this pattern the controller is able to bring
the system outputs/states back to the desired reference within desired time bound.
Hence, we can see the control skipping patterns generated from the CSA keep the
closed-loop system within the desired performance margin by carefully choosing
the instances to skip control executions and the developed CSA is a finitary rep-
resentation of such stable patterns.

4.6. Concluding Remarks
The methodology presented in this chapter can generate a set of all possible
aperiodic control schedules for a closed-loop control system, respecting a given
performance margin. We represent the system execution under control skipping
patterns with a switched system analogy and develop a switching strategy that
uses MDADT-based stability approach. We build a pattern generator automaton
that can generate all possible control skipping patterns with this intuition, keeping
the system within provided performance margin. Theoretically, our methodology
enables more possibilities towards increasing the number and allowable positions
of control skips eyeing more resource optimization. In the future we intend to
incorporate a ranking technique for performance-wise ordering of the generated
patterns. Also, adding a schedulability perspective to derive co-schedulable con-
trol skipping schedules for a set of control tasks running in single control unit
would be an even more practical extension of this work.

Chapter 5

Utilizing Aperiodic Control Execu-
tions to Design Resource-friendly
Secure CPS

The new age technological advancements has made the features like mobility
and autonomy the most coveted features in a CPS. But as we have discussed and
demonstrated, such features demand more connectivity which expands the attack
surface for a Man-In-The-Middle type attacker. Considering the minimalistic
and cost-optimized design, thoroughly securing CPS designs with cryptographic
technique would be an overkill. This motivates the research on resource-aware
security schemes for CPS. In this chapter we discuss our methodology to develop
a resource-friendly intrusion detection system (IDS). The crux of the solution
relies in the employment of intentional execution skips as a resource-aware secure
control mechanism here. Since we are already familiar with the control skips from
the previous chapter and have described how to take care of the performance
of a CPS during such control execution skips, in this chapter we focus on how
to utilize them from a security standpoint. Formal methodologies are used to
provably ensure security of this resource-optimized IDS scheme. Since, we analyze
the attack resilience of these patterns using Satisfiability Modulo Theory (SMT)
based techniques, we first formalize a generic secure CPS model to be able to
symbolically represent it.

5.1. Description and Formalization of Secure CPS

This section briefly describes a generic CPS model with plant and controller.
After that, formalization and mathematical description of the secure CPS model
has been provided.

49

50 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

5.1.1. Control System Modeling

A physical plant can be represented as a linear discrete-time invariant system
(LTI) having the dynamical equations given as follows.

x[k + 1] = Ax[k] +Bu[k], y[k + 1] = Cx[k + 1] (5.1)

x̂[k + 1] = Ax̂[k] +Bu[k] + L(y[k]− Cx̂[k]), u[k + 1] = Kx̂[k + 1]

Here x[k] is the value of state variable at k-th iteration, which is being controlled
by control input u[k] calculated by the controller based on the estimated state
x̂[k]. In this work, we consider Kalman Filter [44] for state estimation and Linear
Quadratic Regulator (LQR) based optimal control technique for calculating the
control input. The control input is received by actuators in plant side and control
action can not be exerted beyond the actuator saturation limit. The estimator
is designed to estimate the states of the plant, that is in closed loop with the
controller, sensing the plant output y. In Eq. 5.1, the estimated state is calculated
using the Kalman Gain, L and output measurement y[k]. Plant outputs are sam-
pled by sensors and respected values should be within supported sensor saturation
limit. Plant outputs are sampled by sensors and transmitted provided they are
within supported sensing ranges. The matrices A,B,C,D are system matrices
and K is the state feedback gain of the controller. Considering the linear system
characteristics all of them are constant in nature.

Since, we want to understand such a closed-loop setup during intentional con-
trol skips, we define X[k] = [xT[k] x̂T[k] u[k]T]T as new state vector for the aug-
mented closed-loop system. Capturing the plant and estimator states along with
control input helps analyze the effect of execution skips on the closed-loop progres-
sion. The dynamical equation for the augmented system is given by the following
equation.

X[k + 1] = A1 X[k], where A1 =

 A 0 B

LC A− LC −BK 0

KLC KA−KLC −KBK 0

 (5.2)

If the execution of the controller is intentionally skipped inside a sampling interval
[k, k + 1), no new control update is calculated or communicated to the plant and
state estimation unit in that sampling instance but sensor update is received.
Therefore, the plant state is updated using the last communicated control input
from previous iteration i.e., u[k + 1] = u[k] and state space equations change as

5.1. Description and Formalization of Secure CPS 51

follows.

x[k + 1] =A x[k] +B u[k], u[k + 1] = u[k]

x̂[k + 1] =LC x[k] + (A− LC) x̂[k] +Bu[k] (5.3)

Following Eq.(5.3), during control skips the augmented system progresses with

A0 =

 A 0 B

LC A− LC −BK 0

0 0 I

, i.e. X[k + 1] = A0 X[k] (5.4)

instead of A1. We have already defined the notion of control skipping pattern in
previous chapter, which we we use to express such scenario. It is basically an l-
length sequence ρ ∈ {0, 1}l that can be used to define an infinite length execution
schedule π = ρω, repeating with period l for a control task.

Note that, we used similar representation of closed-loop system with A1, A0 in
the previous chapter as well (similar to [32]). But in this chapter we are newly
defining them in Eq. 5.2 and Eq. 5.4, because in our current CPS set up a Kalman
filter based observer unit is present in controller side. So, here we calculate the
feedback control input using estimated system states from the received sensor
data(refer to Fig. 5.1), unlike the previous setup in Chapter 4, where actual system
states were used to calculate the control update (a full state feedback control
system, refer to Fig. 4.1). The methodology expressed in that earlier chapter
is however generic enough to work also with estimator based set up. Here, the
evolution of the closed loop system according to a control skipping pattern can be
exemplified similarly like before and we can utilize the developed methodology to
employ control skips in a performance-friendly way. For example, with ρ = 110010,
we have,

X[6] = A1X[5] = A1A1A0X[3] = . . . = A1A1A0A0A1A0X[0].

5.1.2. Control Design and Performance Metrics

In this work we consider LQR-based controller design techniques. We optimize
the generic LQR cost function J as shown in Eq. 4.7. A lower cost signifies a
better and efficient controller design. But the main crux of this work is in use
of aperiodic control executions or control skipping patterns. For this we need a
measure of how much an LQR-based optimal controller can tolerate such control
skips. A significant amount of work exists in the literature addressing the issue of

52 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

control design and performance in the presence of execution skips [32,75,91]. For
this work we choose settling time requirement of a system as control metric from
which we can calculate the minimum execution rate, rmin, following Theorem 4.1
of [32].

Theorem 1. [32] For a control loop with the associated closed loop matrix A1

being Schur stable and r being the rate of successful execution of the loop over
an infinite horizon, if there exists a Lyapunov function V (x(t)) = x′(t)Px(t) and
scalars α0, /α1 such that,

αr1α
1−r
0 > α

AT1 PA
T
1 ≤ α−2

1 P

AT0 PA
T
0 ≤ α−2

0 P

(5.5)

then the system remains exponentially stable with a decay rate ≤ α.

Now for a given settling time requirement Ts of a system we can calculate
the (l, ε)-exponential stability criteria as l = dTs

h
e, where h denotes the sampling

period of the closed loop system [32]. Then from Definition 2 we can calculate
the desired exponential decay α as ln 1/ε

l
. The execution rate r can be found by

solving above equations. The value of r can be bounded for any given exponential
stability requirement of a system using the following set of results.

1. if A0 is marginally stable, then the closed loop is exponentially stable for
0 < r ≤ 1.

2. if A0 is unstable, the closed loop is exponentially stable for 2 loge α+loge γ0
loge γ0−loge γ1

<

r ≤ 1, where γ1 = α−2
1 = λ2

max(A1) and γ0 = α−2
0 = λ2

max(A0), γ1 < 1, γ0 >

γ1 and λ2
max(Ai) is maximum eigenvalue of Ai for i ∈ 0, 1.

So using the above theorem and formulae taken from [32], if we consider the
possibility of unstable system behaviour during control skips we can calculate
the minimum execution rate rmin = 2 loge α+loge γ0

loge γ0−loge γ1
. This is the minimum number

of executions required for the system to stay within the stability margin when

Figure 5.1: FDI attack on a secure CPS

5.1. Description and Formalization of Secure CPS 53

nup

ndown

C

C1

C2

Figure 5.2: Sporadic IDS Formalization

certain control executions are skipped.

This essentially means, to maintain Ts, the controller has to be executed at
least dl × rmine times in l-length consecutive control samples. We have defined
control skipping patterns in the previous chapter. Following such existing theories,
in an l-length control skipping pattern, ρ, there has to be at least dl×rmine number
of ‘1’s. We use this performance-based pattern selection strategy to incorporate
performance guarantee in a given control skipping pattern for certain closed-loop
setup in this work.

5.1.3. Formalization of Sporadic IDS

A sporadic IDS can be specified by a pair (nup, ndown) such that the IDS is ac-
tive for nup consecutive control samples and inactive for ndown consecutive control
iterations, and this behavior repeats in a cycle. As shown in Fig.5.2, let for a
control system, there exists an initial region C which is composed of the initial
range of plant state values. Starting from C, consider that the preferable oper-
ating region for the system is given by an inner safety region C1(C ⊆ C1) in the
absence of any external attacks. The safety guarantee offered by a sporadic IDS
is based on the existence of an outer safety region C2 (C1 ⊂ C2) which meets the
safety requirements of the system, but may not be a preferable operating region
for unsatisfactory control performance. The IDS parameters, nup, ndown can be
formally defined as,

x[k] ∈ C1 =⇒ ∀i ≤ ndown, x[k + i] ∈ C2 when IDS is off

x[k] ∈ C2 =⇒ ∀i ≥ nup, x[k + i] ∈ C1 when IDS is on

54 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

where x[k] denotes the plant state at any time instant k. When an IDS is not
available for ndown consecutive control iterations, stealthy attacks (similar to [43])
which the control system is hoodwinked to think as environmental noise are pos-
sible. The period ndown should be small enough to ensure that starting from ∈ C1,
such attacks should not steer the system outside C2. When the IDS is active for
nup consecutive control iterations, no false data injection attack is possible. The
period nup needs to be large enough to ensure that the system is brought inside
C1 starting from anywhere ∈ C2. This ensures that the system duly recovers from
the effect of false data injected during the period when IDS was inactive thus
nullifying attacker’s efforts.

Attack resilience of an IDS enabled CPS is measured by the value of ndown/nup.
Which is derived from the minimum attack-length, i.e., the minimum number of
consecutive control samples required by an attacker to drive the system out of
C2 (starting ∈ C1) while remaining undetected (thus defining a minimum effort
successful attack). We can bound the down-time ndown of an IDS as ndown < dmin.
This allows us to set a maximum down time of ndown = dmin−1 in order to stop the
attacker before being successful. Thus, increasing dmin with suitable choice of CPS
parameters in-turn increases the attack resilience (i.e., ndown/nup) of the system.
Such a measure enables us to quantify the level of security provided against FDI
attacks by the IDS in place. Furthermore, the increment in ndown proportionally
reduces the computational and communication requirement of the IDS.

5.1.4. Attack Modeling

A schematic of a cyber-physical system under stealthy false data injection attacks
is given in Fig. 5.1. We consider a stealthy attack scenario where the commu-
nication network has been compromised and an adversary can (i) provide false
sensor measurements to the controller, denoted by ỹ[k] = y[k] + 4y[k] and (ii)
tamper with the control input resulting in ũ[k] = u[k] + 4u[k] received by the
actuators. Here, 4y[k] and 4u[k] are the amount of measurement and actuation
errors respectively, induced by the attacker at the k-th iteration, and we express
this with an attack vector, A[k] = [4uT[k] 4yT[k]]T. Under these circumstances,
the estimator estimates corrupted x̂[k + 1] (i.e., ˜̂x[k + 1]) to minimize the residue
r[k] = ỹ[k] − Cx̂[k] (i.e., the difference between the measurement received and
the estimated measurement). Due to such a compromised control sample, the
plant states are polluted by the attacker-induced errors. As a result, the ma-
nipulated states x̃[k] are driven towards an unsafe region (outside of C2). We
can formalize the state progression in attacked situation using our augmented
system with manipulated state vector, X̃[k + 1] = A1 X̃[k] + B1 A[k] where,

5.1. Description and Formalization of Secure CPS 55

BT
1 =

[
0 LT LTKT

0 0 I

]
. In presence of execution skip, BT

1 can be replaced with

BT
0 =

[
0 LT 0

0 0 0

]
, causing minimized perturbations during skipped executions.

Note that to the plant and controller these false data injections may get disguised
as process and measurement noises. Following existing techniques for physics based
attack detection [34], we assume the following system protection and attack model.

1. In our protection system model, the threshold-based intrusion detector flags
an attack whenever the residue r[k] surpasses the detector threshold given
by some constant Th, i.e., ||r[k]|| > Th, which in turn limits the attacker’s
effort of manipulation (||.|| denotes vector 2-norm). We can also consider
the system to be fitted with popularly used χ2 based attack detectors since
detection criteria in such probabilistic detectors can as well be interpreted
as non-probabilistic threshold-based detection techniques [43].

2. The attacker has full knowledge of the system dynamics and threshold-based
detectors present in the system. The attacker can observe the system closely
and choose proper false data irrespective of knowing the control skipping
pattern. The system supported sensor range and actuator saturation limit
impose a bound on the attacker’s stealthy efforts.

3. The goal of the attacker is to alter the operating point of the system thereby
driving it to an unsafe state x /∈ C2 in the least amount of time possible
while remaining stealthy.

An attack vector of length d can be defined as Ad = A[1 : d] =

[
4u1 · · · 4ud
4y1 · · · 4yd

]
.

The attack vector Ad launched on a protected control system executing its k-th
iteration is deemed

1. stealthy if ‖r[i]‖ ≤ Th for all i ∈ [k+ 1, k+ d+nup] where nup is the up-time
of the IDS, and

2. successful if ∃j ∈ [k + 1, k + d+ nup] such that x[j] /∈ C2, i.e., it violates the
safety criterion of the system.

Note that we define the stealthiness and success of an attack of length d over a
window of d + nup control samples, because an attack of d-iterations can drive
the system to an unsafe state even after the attack is over. So, we check the
safety criteria for a period equal to the attack duration d followed by the time nup
between the attacker’s two consecutive attempts. This setting works because of
our additional constraint that during IDS operation for period nup we ensure that
the system will converge back inside C1.

56 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

5.2. A Motivating Example
We consider a trajectory tracking control (TTC) example to demonstrate the ad-
vantage of using control skipping pattern in improving the attack resilience of the
system. TTC system regulates deviation (denoted by D) of a vehicle from a given
trajectory and deviation (denoted by V) from a reference velocity by applying
proper amount of acceleration as control input. Refer to Tab. 5.1 for the system
matrices and initial safety regions. Following [32], the settling time criterion of
5 s allows maximum 50% execution skips, i.e., rmin = 0.5 for this system. The
attacker model is as described in Sec. 5.1.4. A threshold-based anomaly detector
present in the system raises an alarm whenever the residue r[k] exceeds the thresh-
old 2, i.e., ||r[k]|| ≥ 2. We consider an attack scenario where the communication
medium is compromised and attacker can falsify sensor measurement data y[k] as
well as actuator signal u[k]. The goal of the attacker is to steer the system to an
unsafe state(/∈ C2) while remaining stealthy (i.e., ∀k ||r[k]|| < 2).

In Fig. 5.3, we consider two possible control schedule scenarios. With the pe-
riodic pattern 1ω, there exists an attack vector of length 11 for which the system
becomes unsafe at the 6-th iteration. However, this attack vector is stealthy as
the residue is never higher than the threshold. The reason that the attack length
need to be much larger than the point of safety violation is because, suddenly
stopping the attack after the 6-th iteration will lead to large residue and thereby
detection. Hence the attack needs to gradually decrease without drastic modifi-
cation in system dynamics. In fact, it can be checked that for this system, 11 is
the minimum attack length (dmin), i.e. there does not exist any attack vector of
length < 11 which is stealthy but successful. Next, we choose an 8-length control
skipping pattern, ρ1 = 11010011 generated following the calculated rmin(= 0.5) as
mentioned in Sec. 5.1.2, hence satisfies its stability requirements. With the same
choice of attack vector as used earlier in the periodic execution, this time, running
the system with the pattern ρ1, we observe the following cases.

1. While the 11-length attack could drive the system to an unsafe state and
remain stealthy for fully periodic execution, in case of execution with the
pattern ρ1, it is detected at 9-th iteration just after driving the system to an
unsafe state at 8-th iteration. This happens because due to the control skips
the attacker’s efforts in those samples are not affecting the system. This
leads to better, unbiased estimation in such iterations which may create a
large residue resulting detection in future iterations that are under attack.

2. We also find that no successful but stealthy attack of length d < 15 is
possible for this system running with the pattern ρ1. System response for this

5.2. A Motivating Example 57

10 20 30 40 50
iterations

0

20

40

V

0

2

4

r

safe V

V for (1)

V for (11010011)

Th

r for (1)

r for (11010011)

Unsafe &

stealthy

for (1)

Detected

 at next

iteration

for pattern

11 length attack

Figure 5.3: Attack vector for periodic not stealthy on 11010011

10 20 30 40
iterations

0

10

20

30

V

0

2

4

r

safe V

V for (11010011)

Th

r for (11010011)

Unsafe State

15 length attack

Figure 5.4: Stealthy and successful attack for 11010011 with more ndown

Figure 5.5: Plotting V (in blue) in left y-axis and residue r (in red) in right
y-axis (in corresponding scales) to demonstrate the effect of stealthy attack on
TTC with and without pattern-based execution. V crossing the blue dashed line
(safety boundary of V) leads to violation of safety and r crossing the red dashed
line (Th) indicates attack is detected.

pattern-based execution (ρω1) of the system, with a successful and stealthy
attack vector of length d = 15 is depicted in Fig. 5.4. The control skips
reduce the amount of attack that could have been injected while remaining
stealthy. In general, the value of dmin is dependent on the choice of pattern
because system-behaviour under a control skipping pattern depends on the
positions of the control skips and the nature of the system.

3. Since the minimum attack-length dmin = 15 in this case, we can set ndown =

14 increasing the attack resilience (i.e., ndown/nup) by ≈ 30% in comparison
with the periodic execution (ndown = 10) for a fixed value of nup. This
increment in ndown in-turns reduces the computation time of the IDS saving

58 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

the resource bandwidth.

In general, there may exist multiple patterns that are equally resilient (i.e.
with similar dmin). Above observations indicate that it is possible for a CPS to
be more resilient to false data injection attacks when running with a control skip-
ping pattern when compared with fully periodic execution. However, we need an
efficient algorithmic framework in order to search for such performance preserving
attack resilient patterns. The next section describes such a framework in detail.

5.3. Proposed Methodology
As motivated earlier, our framework has two distinct steps which are discussed
next.
• Step-1: From a set of stable control skipping patterns P , we first formally

analyze the attack-resilience of the existing IDS against FDI.
• Step-2: In this step, we derive the most attack resilient execution patterns

that satisfy the desired performance criteria of the system. Using this set of
most attack resilient patterns we can reduce resource consumption of the existing
sporadic IDS while ensuring the same level of security.

5.3.1. Attack Vector Synthesis

In order to synthesize patterns having the best attack-resilience, an important
step is to verify the existence of successful and stealthy attack vectors for patterns
under test. We develop a formal approach to synthesize attack vectors for control
skipping patterns as outlined in Algorithm 2. We build on earlier work on attack
vector synthesis for periodic controllers [45].
The function SynAttVec in Algo. 2, symbolically executes the system starting
from any initial state x[0] inside the inner safety region C1(Line 2) for d + nup

control samples following Eqn. (5.1). In each sample k, we introduce two non-
deterministic variables 4u[k] and 4y[k] to model the actuation and measurement
errors introduced by the adversary (Line 6). Attack length is bounded to d by
setting these variables to zero for each iteration k > d. In case of the skip in k-th
control execution (i.e., ρ[k] = 0), x[k], r[k], y[k] are calculated following Eq. (5.3)
(u[k], ũ[k] are updated using the last calculated u[k− 1], ũ[k− 1] , in line 9). The
function at the end validates an assertion using the SMT solver Z3 [19] to check
if any attack of length d that is stealthy over d + nup samples (i.e., until further
activation of IDS), violates the safety requirements of the system in any control
sample (Line 11). On getting satisfiable solution from the solver, SynAttVec()
returns a successful attack vector Ad of length d (Line 13). Otherwise it returns
NULL. This guarantees that no attack vector of length d exists that remains

5.3. Proposed Methodology 59

Algorithm 2 Attack Vector Synthesis for Pattern-based Execution
Require: Attack length: d, pattern: ρ, IDS up-time: nup, detector threshold:

Th, inner safety region: C1, outer safety region: C2

Ensure: Attack vector Ad of length d (if it exists, otherwise NULL)
1: function SynAttVec(d, ρ, nup, Th)
2: x[0] ∈ C1; x̂[0]← 0; u[0]← Kx̂[0]← 0; y[0]← Cx[0]; . Starting from C1

3: r[0]← y[0]− Cx̂[0]; ũ[0]← u[0]; ỹ[0]← y[0];
4: for k = 1 to d+ nup do
5: x[k]← Ax[k− 1] +Bũ[k− 1]; x̂[k]← Ax̂[k− 1] +Bu[k− 1] +Lr[k− 1];
6: if k ≤ d then 4u[k]← nondet(); 4y[k]← nondet();
7: else 4u[k]← 0; 4y[k]← 0;
8: if ρ[k] = 1 then u[k]← Kx̂[k]; ũ[k]← u[k] +4u[k];
9: else u[k]← u[k − 1]; ũ[k]← ũ[k − 1]; . Skip Execution

10: ỹ[k]← y[k] +4y[k]; r[k]← ỹ[k]− Cx̂[k];

11: Φ←assert((|r[1]| ≤ Th∧ ..|r[d+nup]| ≤ Th) ∧ (x[1] /∈ C2∨ ..∨x[d+nup] /∈
C2));

12: if Φ is unsatisfiable then return NULL;

13: else return Ad ←
[
4u1 · · · 4ud
4y1 · · · 4yd

]
;

stealthy over d + nup control samples and successfully violates the safety of the
system in any of those samples.

As we mentioned earlier, this minimum length dmin, for which Algo. 2 finds a
successful and stealthy attack vector (minimum attack-length) denotes how secure
the system is towards FDI attacks. So, this helps in measuring the security level of
the sporadic IDS, because to prevent such a successful attack, the IDS down-time
(maximum allowable attack-length) must be less than this dmin. In other words,
ndown = dmin−1. Deriving this in order to find out attack resilience of the system,
is our main goal behind designing MinAttLen() in Algo. 3, which internally calls
the SynAttVec() function.

5.3.2. Synthesizing Attack Resilient Patterns

As described earlier, given a control system and its settling time-based perfor-
mance criteria, we can derive the required minimum execution rate rmin (refer to
Sec. 5.1.2). For a closed-loop system (P,K) we provide the following inputs to
Algo. 3.
i. Inner and outer safety regions of system states, given by C1 and C2 respectively,
ii. threshold Th of the existing threshold-based detector,
iii. the existing sporadic IDS specifications (with periodic execution pattern ρ∗ =

1) i.e. minimum attack length dρ
∗

min and IDS up-time nρ∗up, and
iv. a set of patterns P = {ρ|ρ ∈ {0, 1}n, n > 0} generated by skipping one or

more control executions following the derived minimum execution rate rmin ;

60 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

Algo. 3 prunes the set P such that each pattern ρ ∈ P having a sporadic IDS with
up-time nρup and minimum attack length dρmin, satisfies the following conditions.

i. Any control schedule (ρω) designed by cyclically repeating ρ will abide by the
desired performance requirement.

ii. Starting from anywhere inside the outer safety region C2, the system, following
ρω will reach a given inner safety region C1 (Fig. 5.2) with no stealthy FDI
attacks as guaranteed by the IDS within nρup iterations.

iii. The ratio (nρdown/n
ρ
up) for ρ is maximum among all patterns P thereby ensuring

minimum IDS execution rate (nρup/(n
ρ
down + nρup)) where the maximum IDS

down-time nρdown for ρ is given by nρdown = (dρmin − 1).

The method to analyze the attack resilience of sporadic IDS schemes running with
control skipping patterns w.r.t the attack resilience of state of the art sporadic
IDS schemes that runs periodically (1ω) is outlined in Algo. 3. Here, our goal is
to output a pruned set of patterns, P , with most attack resilience that would help
us design better sporadic IDS schemes with provable security, improved resource
utilization ensuring best performance. We define ρ∗ = 1 as the 1-length pattern
representing the periodic execution, i.e., (ρ∗)ω = 1ω in order to represent existing
IDS schemes in the literature. Now we describe the methods to compute IDS
up and down time for any pattern (using FindOnTime() and MinAttLen()
function respectively).

FindOnTime() returns the minimum number of iterations required by follow-
ing the pattern ρ to formally guarantee that the system starting from any state
x[k] in the outer safety region C2 (as a result of successful attack) will be in a state
inside the inner safety region C1 (Lines 19-34). We symbolically simulate attack-
free closed loop iterations of the system starting from an initial state x[0] ∈ C2

according to the pattern ρ′ (where ρ′ represents a left cyclic shift of the pattern
ρ) (Lines 22-24). We use the clause x[k] 6∈ C1 which implies that the system is not
inside the inner safety region C1 after k iterations (Line 31). This assertion is the
negation of our design requirement for the up-time nup of the IDS. Then we check
the satisfiability of the assertion Φ using the SMT solver Z3. If the assertion Φ is
found to be unsatisfiable using SMT solver, then our design requirement is valid
(Line 33). However, if Φ is satisfiable, then we infer that the present IDS up-time,
n, is not sufficient to bring the system to the inner safety region C1 starting from
any point in the outer safety region C2, and we increase n until Φ becomes unsat-
isfiable (Line 32). We now repeat this procedure to find the maximum value of n
that satisfies our design requirement over all possible cyclic shifts of the pattern
ρ (Lines 23-32). We check for all possible such shifts since the system can start
from C2 while executing any position in the pattern. The value of n thus found
is a safe up-time of the sporadic IDS designed using an attack resilient control

5.3. Proposed Methodology 61

Algorithm 3 Sporadic IDS Design
Require: P , closed-loop system (P,K), rmin, dρ

∗

min, nρ
∗
up, Th, C1 and C2

Ensure: Pruned set P with most attack resilient patterns
1: nρ

∗

down ← dρ
∗

min − 1;
2: rateρ∗ ← nρ

∗
up/(n

ρ∗

down + nρ
∗
up); ratemin ← rateρ∗ ;

3: for each pattern ρ ∈ P do
4: nρup ←FindOnTime(ρ, C1, C2);
5: dρmin ← MinAttLen(ρ, dρ

∗

min, n
ρ
up, Th)-1;

6: if dρmin ≥ dρ
∗

min then nρdown ← dρmin − 1;
7: rateρ ← nρup/(n

ρ
down + nρup);

8: if rateρ > ratemin then P ← P \ ρ
9: else ratemin ← rateρ

10: else P ← P \ ρ
11: return P
12: function MinAttLen(ρ, dρ

∗

min, nρup, Th)
13: d← dρ

∗

min;
14: repeat d← d+ 1
15: for i = 0 to |ρ| − 1 do
16: ρ′ ← i-times left cyclic shift of pattern ρ;
17: if AttVecSyn(d, ρ′, nρup, Th) 6= NULL then return d;

18: until AttVecSyn(d, ρ′, nρup, Th)= NULL

19: function FindOnTime(ρ, C1, C2)
20: n← 1
21: for i = 0 to |ρ| − 1 do
22: ρ′ ← i-times left cyclic shift of pattern ρ;
23: repeat
24: x[0] ∈ C2; u[0] = 0; y[0] = 0;
25: for k = 1 to n do
26: r[k − 1]← y[k − 1]− Cx̂[k − 1];
27: x̂[k]← Ax̂[k − 1] +Bu[k − 1] + Lr[k − 1];
28: x[k]← Ax[k − 1] +Bu[k − 1];
29: if ρ′[k] = 1 then u[k] = Kx̂[k];
30: else u[k]← u[k − 1]; . Skip Execution
31: Φ← assert(|r[1]| ≤ Th ∧ · · · ∧ |r[n]| ≤ Th ∧ x[n] 6∈ C1);
32: n← n+ 1
33: until Φ is unsatisfiable
34: return n− 1

skipping pattern ρ, i.e. nρup = n (Line 34).

The MinAttLen() function on the other hand computes all possible cyclic
shifts of the input pattern as ρ′ (Line 16) and calls the function SynAttVec()
(Line 17) which checks for existence of possible stealthy and successful attack
vector of length d (initialized with input length dm in line 13). If no attack
vector of length d exists, we can claim that the system can not be made unsafe

62 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

with stealthy attack of length d. Hence, we search again for an attack vector by
increasing the attack length by 1 (Line 14). Otherwise, on finding a successful
and stealthy attack vector of d length, we terminate by decreasing the length by
1 and return the length as minimum attack length (Line 17).

In Algo. 3, we first take a closed-loop system and a set of patterns P that
meet the desired performance requirement for the system. Next, we calculate the
up and down-time for any pattern ρ using FindOnTime() and MinAttLen()
respectively (line 4-5). We now prune all patterns whose minimum attack-length
is less than periodic execution as they offer lower attack resilience. Next, to
minimize the resource requirements of the IDS, we need to find the set of control
skipping patterns with minimum IDS execution rate (given by nup/(nup + ndown))
and prune the rest. To this end, we initialize ratemin with given sporadic IDS
execution rate for periodic execution (lines 1-2). We start by removing the patterns
which have a higher IDS execution rate compared to ratemin (line 8). For every
remaining pattern ρ ∈ P we compute their IDS execution rate rateρ as the ratio
nρup/(n

ρ
down + nρup) (line 7) and compare it with ratemin (line 8) to prune ρ if

rateρ > ratemin. Otherwise, ratemin is updated with rateρ (line 9) to find the
patterns with the least IDS execution rate. Finally, Algo. 3 returns a pruned set
of control skipping patterns P (line 11) such that, ∀ρ ∈ P , performance criteria is
met (follows rmin) and a more sporadic IDS (i.e. with less IDS activation) can be
designed with a formal guarantee of the security against FDI.

5.4. Results
We demonstrate the efficacy of our proposed approach considering two systems
from the automotive domain. The systems are Vehicle Dynamic Controller (VDC)
and Trajectory Tracking Controller (TTC).

5.4.1. Case Studies

VDC regulates the lateral dynamics of a vehicle by controlling its side slip (β)
and yaw rate (γ) [95]. The control input, in this case, is the steering angle. For
TTC [43], details about the system specifications are given in Sec. 5.2. For both
the systems, system matrices (A,B,C), sampling period (h), outer (C2), inner
(C1) safety regions of the state variables and detector thresholds (Th) are given in
Tab. 5.1. Safety regions are determined following [62,63].

For the above systems, we first report in Row 1 of both parts of Tab. 5.2
the results for sporadic IDS design with fully periodic execution (1ω) similar to
[43]. For periodic execution, our method computes IDS up-time nup = 3, 3, and
minimum attack length dmin = 11, 3 for TTC and VDC respectively. These are
given in Row 1, Col. 4 of both parts in Tab. 5.2 (ndown = dmin − 1). Using these,

5.4. Results 63

IDS execution rate (rate) of periodic execution are calculated and reported in Col.
5 of Tab. 5.2. We now derive a set of control skipping patterns for each of the
systems that follow an rmin of 0.5 as derived from their respective settling time
requirements. We input this set of stable patterns for the corresponding system
and its specifications to Algo. 3. For each case, Algo. 3 outputs a set of patterns
with maximum resilience as provided in Col. 3 of Tab. 5.2. We check upto 12
length control skipping patterns. We report some of the analyzed patterns with
more attack resilience compared to the periodic pattern in Tab. 5.2 along with the
output patterns (bold ones). As we can see, from 2nd row of each part the reported
patterns are sorted in descending order of attack resilience. For each pattern, the
corresponding safe IDS configuration 〈nup, ndown〉 is given in Col. 4 with the IDS
execution rate in Col. 5. There might be multiple patterns with same resilience.
Like for VDC as we can see in 4th 5th and 6th row of Tab. 5.2, 110010, 110100 and
100011, all of these 3 patterns exhibit similar level of resilience against FDI with
equal resource consumption, i.e. ndown = 5 (Col. 4) and IDS rate = 0.375 (Col.
5). Using either of them will make the system equally resilient with minimum
resource consumption.

For each system, the patterns reported by our automated method as most
attack resilient (i.e. requiring lowest IDS usage) are marked in bold. For TTC,
running our method we find the most attack resilient pattern of 10 length as
ρ = 1010011111 (with IDS rate 0.1667) showing a 27.78% improvement w.r.t.
existing periodic IDS with rate = 0.2307 (refer to Col. 5, Row 1). For l = 11, we
have ρ = 11010111100 with similar resilience. For a given maximum l(= 12), using
the methodology described in Sec. 5.1.2 we get a set of control skipping patterns
P that perform as desired. Among these patterns, Algo. 3 (Lines 3-11), reports
only those values which provide better resilience w.r.t. periodic control. Similarly
for VDC, from a set of stable control skipping patterns our methodology reports
the most resilient solutions (shown in bold) resulting in about 37.5% reduction in
IDS rate.

Table 5.1: System Specifications
System Specifications C2 C1 Th

VDC

A = [0.4450,-0.0458;1.2939,0.4402];
B = [0.0550;4.5607]; C = [0,1];
h = 0.1sec; K = [-0.0987;0.1420];
L = [-0.0390;0.4339]

β ∈ [-1, 1]
γ ∈ [-2, 2]

β ∈ [-0.1, 0.1]
γ ∈ [-0.2, 0.2] 0.003

TTC

A = [1.0000, 0.1000;0, 1.0000];
B = [0.0050;0.1000]; C = [1 0];
h = 0.1sec; K = [16.0302, 5.6622];
L = [1.8721;9.6532]

D ∈ [-25, 25]
V ∈ [-30, 30]

D ∈ [-15, 15]
V ∈ [-18, 18] 2

64 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

Table 5.2: Designed Sporadic IDS schemes for VDC and TTC

System Pattern length Pattern 〈ndown,nup〉 IDS rate
- 1 10,3 0.2308
10 1010011111 15,3 0.1667
10 1101011100 14,3 0.1765
10 1101001010 13,3 0.1875
11 11010111100 15,3 0.1667

10100101011 13,3 0.1875

TTC

11 10100111010 13,3 0.1875
- 1 2,3 0.6
2 10 5,3 0.375
5 11010 4,3 0.4286

110010 5,3 0.375
110100 5,3 0.3756
100011 5,3 0.375

10
1100101010 4,3 0.4286
1101001010 4,3 0.4286
1000111001 4,3 0.4286
110001110010 4,3 0.4286

VDC

12 110100111000 4,3 0.4286

For comparison, we consider the effect of a stealthy and successful attack on VDC
when it is executing the closed loop following 1ω (periodic) and (10)ω (best pattern
returned by Algo. 3 for l = 2). Our method reveals that the minimum attack
length for VDC following 1ω and (10)ω as 3 and 5 respectively. Fig. 5.7 shows
the residue of the VDC considering an attack scenario which is stealthy since
||r|| ≤ Th is always satisfied for both 1ω and (10)ω. For the same attack scenario,
we plot system states (i.e., side slip β and yaw rate γ) of the VDC in Fig. 5.8
considering both 1ω and (10)ω. The attack inflicted during the IDS off time is
unable to cross the safety limits (of value 1 and 2 in Y axis) as we activate IDS
from 2-nd iteration in case of 1ω and from 5-th iteration in case of (10)ω depending
on their corresponding minimum attack lengths as mentioned earlier. The plot
clearly demonstrates that due to the deployment of pattern based execution, the
safety of the system is maintained in spite of increasing the down-time of the IDS
(from 2 to 5). This validates our principal claim of potential increment in system
attack resilience provably improving security by judiciously skipping some control
executions. Next, we demonstrate a useful application of the ability to implement
provably safe sporadic IDS leveraging control skipping patterns in automotive
systems.

5.4. Results 65

5.4.2. Manifestation on CAN bandwidth

Controller Area Network (CAN) [17] is a lightweight broadcast protocol used to
connect automotive domain Electronic Control Units (ECUs). CAN sends mes-
sages without source or destination information and lacks any security mecha-
nisms. Attackers have exploited the lack of security primitives in CAN to inject
false data, manipulate denial of service, or launch zero-day like attacks on auto-
motive [37,48]. Hence the security of intra-vehicular network is an important issue
due to the safety-critical nature of automotive systems [15,55,87]. As a result, the
use of MAC has been made mandatory as per AUTOSAR standards [83]. So we ex-
plore the efficacy of our proposed sporadic IDS design approach towards reducing
the computational and communication overhead in intra-vehicular communication

Figure 5.6: Example of FDI Attacks on Patterned Execution

1 2 3 4 5 6 7 8

Time(x0.1)(s)

0

2

4

re
s
id

u
e

10
-3

Th || r || in 1 || r || in (10)

Figure 5.7: Stealthy attack on VDC

1 2 3 4 5 6 7 8

Time(x0.1)(s)

0

1

2

3

 (
ra

d
),

 (

ra
d
/s

) safe in 1 in (10)

safe in 1 in (10)

On time in

1

Off time

in 1

Off time in (10) On time in (10)

Figure 5.8: Higher IDS Off time (ndown) for control skipping

66 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

network protocols like CAN.

Let us consider an automotive system where the CAN messages are commu-
nicated through the bus with a speed of B bps at periodicity p1, p2, . . . , pk such
that p1 > p2 > · · · > pk. The number of message types with rate pi is given by
mi, i ∈ {1, · · · , k}. Assume that IDS is implemented for messages with periodic-
ity pk′ and there are mk′ > 0 number of such types of messages. Similar to [17],
we consider a p1-length observation window (≥ the largest period) and compute
bandwidth consumption in CAN bus for the aforementioned setup through the
following steps.
A. We find out the number of messages communicated over the observation win-
dow p1. For any mi it is ci = dp1/pie∀i ∈ [0, k]. We consider maximum CAN
payload for each message, i.e. 64 bits.
B. For each of the m′k different type of messages, the IDS rate is ratei, i ∈ [1,m′k].
If we design the IDS with CMAC/AES-128 (with a-bit CMAC) [83] encryption
to provide confidentiality and authenticity, payload will be of size (64+a) bits.
This will convert to d(64+a)/128e AES blocks or b= (d(64+a)/128e × 128)/64

CAN frames (CAN payload size=64). In such an arrangement, each CAN frame
will be replaced by b CAN frames when IDS is active (refer to Fig. 5.9a where
b = 4). Hence, over the observation window, each of the mk′ messages is trans-
mitted (1 − ratei) × ck′ times without IDS active and b × ratei × ck′ times with
IDS active giving a total count of (1 + (b− 1)ratei)× ck′ .
C. Additional 47 bits are added to the payload to form one CAN frame (SOF
+ Arbitration + RTR + Control + CRC + Acknowledgment + EOF + Inter-
frame Space = 1 + 11 + 1 + 6 + 16 + 2 + 7 + 3 = 47 bits) [17]. Thus, in
our consideration, size of each CAN frame is (64+47) bits = 111 bits. Follow-
ing this, total bandwidth consumption over observation window is computed as
T = 111 × [m1 + m2 × c2 + .. +

∑mk′
i=1 (1 + (b − 1)ratei) × ck′ + .. + mk × ck]/B.

Let the IDS rates for some control skipping pattern, output by Algo. 3 be
rate′i,∀i ∈ [1,mk′]. Since Algorithm 3 ensures if proposed patterns are used
rate′i < ratei(∀i ∈ [1,mk′]), the improvement in bandwidth consumption when
executing a pattern based schedule compared to a periodic schedule is given as,
(T − T ′)/T = 111 ·

∑mk′
i=1 ((1 + (b− 1)(ratei − rate′i)) · c3)/T considering T ′ as the

bandwidth consumed by pattern based schedule.

Example: Let us consider the following setup of (#message, periodicity):
〈m1, p1〉 = 〈10, 1〉, 〈m2,p2〉 = 〈20, 0.2〉, 〈m3, p3〉 = 〈2, 0.1〉(V DC),

〈m4, p4〉 = 〈2, 0.1〉(TTC) in CAN bus. So, the VDC and TTC both require
two types of messages (sensor o/p, control i/p) of period p3 and p4 respec-
tively. These are denoted by CAN IDs 1 · · · 4(Fig. 5.9a). Therefore considering
1ω, c1 = 1, c2 = 5, c3 = c4 = 10. Here 4 messages with rate = 0.1 are the 2 ac-

5.5. Concluding Remarks 67

Figure 5.9: (a) CAN Transmissions with sporadic IDS in presence of adversary,
(b) Message flow for (1)ω, (c) Message flow for (10)ω

tuator messages (ID = 1 and 3 in Fig. 5.9) and 2 sensor messages (ID = 2 and
4 in Fig. 5.9) for VDC and TTC. We see ∀i ∈ [1,m3], ratei = 0.6 for 1ω and
rate′i = 0.37 for (10)ω. Similarly∀i ∈ [1,m4], ratei = 0.23 for 1ω and rate′i = 0.17

for (1010011111)ω (ref. Tab. 5.2). During skips in the control execution, actu-
ation signals are not communicated as we can see in Fig. 5.9c, which also frees
bandwidth. Actuation signal from VDC will get transmitted c3 = 5 times and the
one from TTC will get transmitted c4 = 7 times(because till 10 length the control
schedue turns out to be (10)ω,(1010011111)ω) over the observation window. Each
of the 2 sensor signals will be transmitted c3 = c4 = 10 times (usual rate). But in
case of periodic execution c3 = c4 = 10 for all 4 messages (Fig. 5.9b). If the IDS
scheme in place uses 128 bit CMAC (i.e. a = 128), it replaces each CAN frame
with b = 4 CAN frames when IDS is active (refer to Fig. 5.9a). Following the
derived formula for the aforementioned setup, we get 16.25% net improvement in
CAN bandwidth consumption using the secure control schedule 10ω for VDC and
1010011111ω for TTC. Considering our methodology to design such pattern based
secure control schedules for a significant number of control loops has an additive
effect on the bandwidth saving. Thus our methodology helps to design sporadic
IDS schemes based on intentional control loop skips which promise better resource
utilization in terms of communication bandwidth.

5.5. Concluding Remarks
The present work formally analyzes the attack resilience of intentionally skipped
control executions. The proposed methodology demonstrates how control skip-
ping patterns can be synthesized guaranteeing desired performance with increased
resilience. The safe and resilient patterns generated by the method helped in re-
ducing the computation and communication overhead of IDS schemes employed in
Automotive CPSs. Interrelating the control and security objectives deterministi-

68 5. Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS

cally to unify the optimization problems is an interesting extension of the present
work that will be explored in the future. Also, integrating our SMT based tech-
nique with safe but approximate analysis (e.g. using ‘Barrier functions’) can help
increase the scalability of the approach for applicability in complex industrial test
cases. These, along with controller or control skipping pattern synthesis for the
joint objective of performance and security are important future extensions pos-
sible for this work. We can incorporate the notion of attack resilience or similar
security metrics with the automata-theoretic approach devised in the last chapter
to synthesize stable and secure control skipping patterns for a resource-aware, safe,
and secure CPS design.

Chapter 6

Conclusion

Formal methodologies have always been favoured by researchers and engineers in
the safety-critical CPS domain. In this thesis, we utilize formal methodologies to
implement a CPS design safely in an integrated platform. We have developed a
tool-chain that verifies the safety of the control program which is in closed loop
with the continuous plant dynamics, and in presence of the platform level non-
idealities (refer to Chapter 3). We then devise a formal methodology that can
analyze the vulnerabilities of such an implemented CPS and provably guarantee
its security (refer to Chapter 5) against false data injection type attacks. But all
these is done keeping the resource constraints of CPSs in mind. For this, we also
propose a control theoretical strategy to figure out how much can these resource
constraints be relaxed in a secure CPS (refer to Chapter 4). This obviously is
achieved without compromising the performance, so that using such a recoverable
bound we can propose a security measure for CPS that is optimized for the inte-
grated platform (refer to Chapter 5). We believe these proposed platform-aware
formal methodologies would be an important contribution in terms of proving a
CPS implementation safe and secure while also guaranteeing that its resource con-
straints in the implementation platform are respected. The following section talks
about some interesting future scopes for each of these contributions that would
add an edge to our current work.

6.1. Summary
We first summarize each of the novel methodologies developed as part of this
thesis.

Verification of Embedded Controller Implementations in Safety-critical CPS

We have developed an SMT-based verification tool-chain SaV erECS for safety
verification of a CPS implementation. The novelty of our tool-chain lies in the
safety verification of an actual embedded control software (ECS) in the presence
of platform-originated delay, jitter, noise, etc. We utilize δ−decidability over re-

69

70 6. Conclusion

als to achieve scalability in the verification process since such ECS usually are
in closed loop with non-linear plants. We also demonstrate working of our tool-
chain on several popular, safety-critical benchmarks to test the tool-chain and
practically establish the claim, that even with a safe hybrid model design, CPS
implementations can become unsafe in certain non-ideal situations in shared exe-
cution platforms.

Automata-Theoretic Framework for Performance-aware Aperiodic Control
Execution Synthesis

In this work, we propose a control-theoretic methodology to analyze the weakly-
hard constraints of a CPS and utilize it to minimize resource usage without ham-
pering the performance of CPS. In our methodology, we represent the control ex-
ecution skips in terms of switched system to make use of mathematical tools like
mode-dependent average dwell time (MDADT) to prove switched system stability.
Stable aperiodic executions are designed in form of stable switching strategies. We
build a timed automaton that follows these stable switching rules and generates all
possible aperiodic control skipping patterns via stable switching. Thus, our novel
methodology can generate aperiodic control sequences with all possible positions of
skipped executions while satisfying a given performance criteria. Our MDADT-
based analysis approach is inherently more impartial towards control execution
skips compared to the state-of-the-art approaches. Also this automata-theoretic
formalism helps capture a finite set of control skipping patterns that respect the
required performance criteria from an infinite set of aperiodic execution possibili-
ties.

Utilizing Aperiodic Control Executions to Design Resource-friendly Secure
CPS

Our third work in the thesis involves analyzing the security aspect of the aperiodic
control executions being motivated from the fact that, control skips tend to reject
false data injection (FDI) attack efforts on communication medium. We already
have pruned the control skipping patterns based on their performance require-
ments in our last work. In this work we use them to build a resource-aware but
provably secure sporadic intrusion detection system (IDS). Our formal methodol-
ogy assesses vulnerability of a CPS (against FDI), when equipped with a sporadic
IDS, and analyze the level of resilience it offers against FDI type attacks with a
promise of minimized resource consumption. This helps us decide which control
skipping patterns are the best from the set of well-performing aperiodic execu-
tions, to develop a provably secure and resource-aware sporadic IDS for a CPS
implementation.

6.2. Limitations and Future Scopes 71

6.2. Limitations and Future Scopes
In this section, we figure out the limitations of the works done in this thesis and
comment on their possible improvements to overcome these limitations. This will
open up some interesting future venues of research that are worth exploring.

Verification of Embedded Controller Implementations in Safety-critical CPS

Even though we consider an actual implementable controller C code (generated
using a widely used model based design platform), we do not take the program
execution schedule into account. Moreover, currently the verification algorithm is
not scalable in cases, where the plant is non-linear or the controller program has
complex control paths or the state space is quite large.

To overcome such limitations, we intend to incorporate the scheduling policies
that is used in the platform. The scheduling policies need to be adapted so that
control task executions ensure by construction that the control objectives can be
attained even in presence of platform interference. Hence to verify safety of the
CPS implementations, we should also check whether its execution schedule is safe
as well. This will also enable us to analyse safety of the system when control
task executions miss their deadlines. Moreover, incorporating execution schedules
might prune some unsafe scenarios as well which can make the verification process
more scalable. We also plan to improve the verification process by incorporat-
ing some control theoretic insight since we want to evaluate more practical and
complex industry-scale benchmarks using our tool-chain.

Automata-Theoretic Framework for Performance-aware Aperiodic Control
Execution Synthesis

The derivations in this work are done considering an individual control loop, but in
practical implementation platforms multiple control loops are embedded. Consid-
ering their periodic executions are schedulable, their aperiodic executions should
also be schedulable, but not without a trade off between the control performances
and resource utilization (controller utilization or bus load) which will come into
picture if we consider the effect of other control tasks. Even though we can lin-
earize a non-linear control loop around certain equilibrium point and use our
MDADT based pattern synthesis, we do not evaluate our methodology on one
such non-linear control loop.

So, as an obvious extension to this work we would like to first formulate it as
an optimization problem in order to choose the patterns with maximized control
performance and minimum resource utilization. We can also develop a proper
ranking scheme to rank the patterns according to their optimal performance and
utilization. Therefore, we can plan to develop a complete solution towards deriving

72 6. Conclusion

the most cost-effective and secure control skipping patterns for each control loop
embedded in the shared platform by incorporating these features and evaluate
it against non-linear control loops popularly implemented in shared platforms of
modern CPSs.

Utilizing Aperiodic Control Executions to Design Resource-friendly Secure
CPS

The use of formal methodology definitely strengthens the security standpoint of the
proposed work and makes it more acceptable than other state-of-the-art sporadic
IDS, but this work lacks a control theoretic analysis to relate security and safety
of the system with control skip positions. Without such analysis our methodology
also fails to ensure best possible performance while choosing the aperiodic patterns
to propose the best security scheme. Moreover, we do not consider the schedule of
the corresponding control-loop, which might play a big role in pruning the possible
patterns.

Essentially, our methodology searches for provably secure attack resistant ape-
riodic control schedules. To overcome its limitations, as a promising future en-
deavour it can be further extended to find out provably secure and most stable
aperiodic control schedules that incur minimum overhead. As mentioned earlier,
developing a quantifiable security metric for control skipping patterns can be a
key to it. This will enable us to integrate a security evaluation methodology with
CSA, that we built in Chapter 4 and formally generate stable and secure control
skipping patterns for a closed loop system. This can also be framed as an opti-
mization problem as well, where the factors to optimize would be performance,
security level and resource utilization of patterns. Solving such an optimization
problem we can balance the trade-offs between performance, resource utilization
and security level of aperiodic control executions in a more scalable way than SMT
solving. Moreover, making the verification process more scalable with such control
theoretic intuitions will also help in analyzing security offered by longer patterns,
which will increase applicability of our methodology.

6.3. Final Note
On a final note, as we can gather from the discussions, the formal methodologies
developed in this thesis contribute to creating resource-aware design of safe and
secure CPS. However, there are certain areas of improvement, incorporating which
might make these solutions more practical and complete. So, on extending our
works to these future directions, they will also become more attuned to achieve
industry-level efficiency in cost-effective, safe, and secure CPS design.

Bibliography

[1] SaverECS benchmark repository. https://github.com/saverecs/

Benchmark_SaverECS.git. [Cited on page 29.]

[2] SaverECS tool repository. https://github.com/saverecs/SaverECS.git.
[Cited on pages 29 and 30.]

[3] M. Althoff. An introduction to cora 2015. In ARCH. EasyChair, 2015. [Cited
on page 17.]

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994. [Cited on page 10.]

[5] Y. Annpureddy et al. S-TALIRO: A tool for temporal logic falsification for
hybrid systems. In TACAS. Springer, 2011. [Cited on page 17.]

[6] K. . Arzen, A. Cervin, J. Eker, and L. Sha. An introduction to control and
scheduling co-design. In CDC, volume 5, 2000. [Cited on pages 4, 16, 21,
and 22.]

[7] K. J. Åström and B. Wittenmark. Computer-controlled systems. Prentice-
Hall, Inc., 1997. [Cited on pages 2 and 36.]

[8] S. Bak et al. Periodically-scheduled controller analysis using hybrid systems
reachability and continuization. In RTSS, 2015. [Cited on pages 3 and 30.]

[9] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal—a
tool suite for automatic verification of real-time systems. In International
hybrid systems workshop. Springer, 1995. [Cited on page 42.]

[10] G. Bernat, A. Burns, and A. Liamosi. Weakly hard real-time systems. IEEE
transactions on Computers, 50(4):308–321, 2001. [Cited on pages 4, 16, 21,
and 22.]

[11] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification. In International Conference on Computer Aided Verification.
Springer, 2011. [Cited on page 16.]

73

https://github.com/saverecs/Benchmark_SaverECS.git
https://github.com/saverecs/Benchmark_SaverECS.git
https://github.com/saverecs/SaverECS.git

74 BIBLIOGRAPHY

[12] M. S. Branicky, S. M. Phillips, and W. Zhang. Scheduling and feedback
co-design for networked control systems. In CDC. IEEE, 2002. [Cited on
page 22.]

[13] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive
experimental analyses of automotive attack surfaces. In USENIX Security
Symposium. San Francisco, 2011. [Cited on page 18.]

[14] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In CAV. Springer, 2013. [Cited on page 17.]

[15] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for vehicle
intrusion detection. In USENIX Security, 2016. [Cited on page 65.]

[16] M. H. Collantes and A. L. Padilla. Protocols and network security in ics
infrastructures. Tech. Rep., 2015. [Cited on page 19.]

[17] J. Cook et al. Controller area network (can). EECS, 461:1–5, 2007. [Cited
on pages 65 and 66.]

[18] A. A. B. da Costa et al. ForFET: A formal feature evaluation tool for hybrid
systems. In ATVA. Springer, 2017. [Cited on page 24.]

[19] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS. Springer,
2008. [Cited on pages 17 and 58.]

[20] A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In CAV. Springer, 2010. [Cited on page 17.]

[21] P. S. Duggirala et al. Analyzing real time linear control systems using software
verification. In RTSS. IEEE, 2015. [Cited on page 17.]

[22] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2e2: A ver-
ification tool for stateflow models. In TACAS. Springer, 2015. [Cited on
page 17.]

[23] A. Eggers et al. Improving SAT modulo ODE for hybrid systems analysis by
combining different enclosure methods. In SEFM. Springer, 2011. [Cited on
page 17.]

[24] F. Flavia, J. Ning, F. Simonot-Lion, and S. YeQiong. Optimal on-line (m,
k)-firm constraint assignment for real-time control tasks based on plant state
information. In ETFA. IEEE, 2008. [Cited on page 21.]

BIBLIOGRAPHY 75

[25] M. Franzle et al. Efficient solving of large non-linear arithmetic constraint
systems with complex boolean structure. Journal on Satisfiability, Boolean
Modeling and Computation, 1:209–236, 2007. [Cited on page 17.]

[26] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification of
hybrid systems. In CAV. Springer, 2011. [Cited on page 17.]

[27] M. B. Gaid, A. Cela, Y. Hamam, and C. Ionete. Optimal scheduling of control
tasks with state feedback resource allocation. In ACC. IEEE, 2006. [Cited on
page 22.]

[28] S. Gao, J. Avigad, and E. M. Clarke. δ-complete decision procedures for
satisfiability over the reals. In IJCAR. Springer, 2012. [Cited on pages 9
and 23.]

[29] S. Gao, S. Kong, and E. M. Clarke. dreal: An smt solver for nonlinear
theories over the reals. In International Conference on Automated Deduction.
Springer, 2013. [Cited on page 17.]

[30] S. Gao, S. Kong, and E. M. Clarke. Satisfiability modulo ODEs. In FMCAD.
IEEE, 2013. [Cited on pages 17 and 28.]

[31] S. Ghosh, S. Dey, and P. Dasgupta. Synthesizing performance-aware (m, k)-
firm control execution patterns under dropped samples. In VLSID. IEEE,
2019. [Cited on page 21.]

[32] S. Ghosh, S. Dutta, S. Dey, and P. Dasgupta. A structured methodology for
pattern based adaptive scheduling in embedded control. ACM Transactions
on Embedded Computing Systems (TECS), 16(5s):1–22, 2017. [Cited on pages
6, 22, 35, 36, 38, 51, 52, and 56.]

[33] S. K. Ghosh, S. Dey, and D. Mukhopadhyay. Performance, security trade-
offs in secure control. IEEE Embedded Systems Letters, 11(4):102–105, 2018.
[Cited on page 19.]

[34] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell. A survey of physics-based at-
tack detection in cyber-physical systems. ACM Computing Surveys (CSUR),
51(4):1–36, 2018. [Cited on pages 20 and 55.]

[35] D. Goswami et al. Multirate controller design for resource-and schedule-
constrained automotive ecus. In DATE, 2013. [Cited on pages 2 and 22.]

76 BIBLIOGRAPHY

[36] W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus. Security in
networked building automation systems. In WFCS. IEEE, 2006. [Cited on
page 19.]

[37] A. Greenberg. Hackers remotely kill a jeep on the highway—with me in it.
Wired, 7:21, 2015. [Cited on page 65.]

[38] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique
for streams with (m, k)-firm deadlines. IEEE transactions on Computers,
44(12):1443–1451, 1995. [Cited on page 21.]

[39] T. A. Henzinger. The theory of hybrid automata. In Verification of digital
and hybrid systems. Springer, 2000. [Cited on page 27.]

[40] INCIBE. Bms: Intelligent buildings – are they secure?, 2016. [Cited on
page 19.]

[41] S. Jadhav and D. Kshirsagar. A survey on security in automotive networks.
In ICCUBEA. IEEE, 2018. [Cited on page 19.]

[42] X. Jin et al. Powertrain control verification benchmark. In HSCC. ACM,
2014. [Cited on page 31.]

[43] I. Jovanov et al. Sporadic data integrity for secure state estimation. In CDC.
IEEE, 2017. [Cited on pages 5, 11, 12, 21, 54, 55, and 62.]

[44] R. E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45, 1960. [Cited on page 50.]

[45] I. Koley, S. K. Ghosh, S. Dey, D. Mukhopadhyay, A. K. KN, S. K. Singh,
L. Lokesh, J. N. Purakkal, and N. Sinha. Formal synthesis of monitoring and
detection systems for secure cps implementations. In DATE. IEEE, 2020.
[Cited on page 58.]

[46] S. Kong et al. dReach: δ-reachability analysis for hybrid systems. In TACAS.
Springer, 2015. [Cited on page 17.]

[47] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for over-
loaded systems that allow skips. In RTSS. IEEE, 1995. [Cited on page 21.]

[48] K. Koscher, S. Savage, F. Roesner, S. Patel, T. Kohno, A. Czeskis, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, et al. Experimental security analysis
of a modern automobile. In S & P. IEEE, 2010. [Cited on page 65.]

BIBLIOGRAPHY 77

[49] D. Kroening and M. Tautschnig. Cbmc–c bounded model checker. In TACAS.
Springer, 2014. [Cited on page 16.]

[50] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security &
Privacy, 9(3):49–51, 2011. [Cited on page 18.]

[51] J.-W. Lee and G. E. Dullerud. Uniform stabilization of discrete-time switched
and markovian jump linear systems. Automatica, 42(2):205–218, 2006. [Cited
on page 37.]

[52] V. Lesi et al. Integrating security in resource-constrained cyber-physical sys-
tems. ACM Transactions on Cyber-Physical Systems, 4(3):1–27, 2020. [Cited
on pages 5 and 20.]

[53] D. Liberzon. Switching in systems and control. Springer, 2003. [Cited on
page 41.]

[54] H. Lin and P. J. Antsaklis. Stability and stabilizability of switched linear
systems: a survey of recent results. IEEE Transactions on Automatic control,
54(2):308–322, 2009. [Cited on pages 22 and 39.]

[55] S. Longari, M. Penco, M. Carminati, and S. Zanero. Copycan: An error-
handling protocol based intrusion detection system for controller area net-
work. In CPS-SPC. ACM, 2019. [Cited on page 65.]

[56] R. Majumdar, I. Saha, and M. Zamani. Performance-aware scheduler synthe-
sis for control systems. In EMSOFT. IEEE, 2011. [Cited on page 22.]

[57] C. Miller and C. Valasek. Adventures in automotive networks and control
units. Def Con, 21:260–264, 2013. [Cited on page 5.]

[58] C. Miller and C. Valasek. A survey of remote automotive attack surfaces.
black hat USA, 2014:94, 2014. [Cited on page 18.]

[59] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger
vehicle. Black Hat USA, 2015:91, 2015. [Cited on pages 18 and 19.]

[60] S. Mitra and D. Liberzon. Stability of hybrid automata with average dwell
time: an invariant approach. In CDC. IEEE, 2004. [Cited on page 37.]

[61] Y. Mo et al. False data injection attacks in control systems. In SCS, 2010.
[Cited on page 20.]

[62] B. Motorsport. Acceleration sensor mm5. 10, 2018. [Cited on page 62.]

78 BIBLIOGRAPHY

[63] B. Motorsport. Steering wheel angle sensor lws, 2020. [Cited on page 62.]

[64] A. Munir and F. Koushanfar. Design and analysis of secure and dependable
automotive cps: A steer-by-wire case study. IEEE Transactions on Depend-
able and Secure Computing, 17(4):813–827, 2018. [Cited on page 19.]

[65] R. Obermaisser, C. E. Salloum, B. Huber, and H. Kopetz. From a federated
to an integrated automotive architecture. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28(7):956–965, July 2009.
[Cited on page 2.]

[66] J. Park, , et al. LCV: a verification tool for linear controller software. In
TACAS. Springer, 2019. [Cited on page 4.]

[67] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin. Dmac: Deadline-miss-
aware control. In ECRTS. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019. [Cited on page 22.]

[68] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale. Beyond the weakly
hard model: Measuring the performance cost of deadline misses. Leibniz Int.
Proc. Informatics, LIPIcs, 106, 2018. [Cited on page 22.]

[69] M. Philippe, R. Essick, G. E. Dullerud, and R. M. Jungers. Stability of
discrete-time switching systems with constrained switching sequences. Auto-
matica, 72:242–250, 2016. [Cited on page 37.]

[70] A. Platzer and J.-D. Quesel. Keymaera: A hybrid theorem prover for hybrid
systems (system description). In IJCAR. Springer, 2008. [Cited on page 17.]

[71] P. Ramanathan. Overload management in real-time control applications using
(m, k)-firm guarantee. IEEE Transactions on parallel and distributed systems,
10(6):549–559, 1999. [Cited on page 21.]

[72] D. P. Shepard, J. A. Bhatti, and T. E. Humphreys. Drone hack. Gps world,
23(8):30–33, 2012. [Cited on page 18.]

[73] G. Simko et al. A bounded model checking tool for periodic sample-hold
systems. In HSCC. ACM, 2014. [Cited on page 17.]

[74] J. Slay and M. Miller. Lessons learned from the maroochy water breach. In
ICCIP. Springer, 2007. [Cited on page 18.]

[75] D. Soudbakhsh et al. Co-design of control and platform with dropped signals.
In ICCPS. ACM, 2013. [Cited on pages 22 and 52.]

BIBLIOGRAPHY 79

[76] M. Souza, A. R. Fioravanti, and R. N. Shorten. Dwell-time control of
continuous-time switched linear systems. In CDC. IEEE, 2014. [Cited on
pages 22 and 38.]

[77] T. Strathmann et al. Verifying properties of an electro-mechanical braking
system. In ARCH14-15. EasyChair, 2015. [Cited on page 31.]

[78] A. Teixeira et al. A secure control framework for resource-limited adversaries.
Automatica, 51:135–148, 2015. [Cited on pages 5 and 20.]

[79] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson. Secure control
systems: A quantitative risk management approach. IEEE Control Systems
Magazine, 35(1):24–45, 2015. [Cited on pages 5, 19, and 46.]

[80] N. Virvilis and D. Gritzalis. The big four-what we did wrong in advanced
persistent threat detection? In ARES. IEEE, 2013. [Cited on page 18.]

[81] Y. Wang, N. Roohi, G. E. Dullerud, and M. Viswanathan. Stability of linear
autonomous systems under regular switching sequences. In CDC. IEEE, 2014.
[Cited on page 37.]

[82] G. Weiss and R. Alur. Automata based interfaces for control and scheduling.
In HSCC. Springer, 2007. [Cited on page 36.]

[83] S. F. Wiesbaden. AUTOSAR — the worldwide automotive standard for e/e
systems. ATZextra worldwide, 18(9):5–12, Oct 2013. [Cited on pages 19, 65,
and 66.]

[84] A. S. Willsky, J. J. Deyst, and B. S. Crawford. Two self-test methods applied
to an inertial system problem. Journal of Spacecraft and Rockets, 12(7):434–
437, 1975. [Cited on page 20.]

[85] D. Xie, H. Zhang, et al. Exponential stability of switched systems with un-
stable subsystems: a mode-dependent average dwell time approach. Circuits,
Systems, and Signal Processing, 32(6):3093–3105, 2013. [Cited on pages 6
and 10.]

[86] D. Xie, H. Zhang, et al. Exponential stability of switched systems with un-
stable subsystems: a mode-dependent average dwell time approach. Circuits,
Systems, and Signal Processing, 32(6):3093–3105, 2013. [Cited on page 38.]

[87] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom. Survey of automotive
controller area network intrusion detection systems. IEEE Design & Test,
36(6):48–55, 2019. [Cited on pages 19 and 65.]

80 BIBLIOGRAPHY

[88] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel. Stability analysis of switched
systems with stable and unstable subsystems: an average dwell time ap-
proach. International Journal of Systems Science, 32(8):1055–1061, 2001.
[Cited on page 38.]

[89] H. Zhang, D. Xie, H. Zhang, and G. Wang. Stability analysis for discrete-time
switched systems with unstable subsystems by a mode-dependent average
dwell time approach. ISA Transactions, 53(4):1081–1086, 2014. [Cited on
page 6.]

[90] H. Zhang, D. Xie, H. Zhang, and G. Wang. Stability analysis for discrete-time
switched systems with unstable subsystems by a mode-dependent average
dwell time approach. ISA Transactions, 53(4):1081–1086, 2014. [Cited on
page 38.]

[91] W. Zhang et al. Stability of networked control systems. IEEE Control Sys-
tems, 21(1):84–99, Feb 2001. [Cited on page 52.]

[92] H. Zhao et al. Formal verification of a descent guidance control program of a
lunar lander. In FM 2014. Springer, 2014. [Cited on page 31.]

[93] X. Zhao, L. Zhang, P. Shi, and M. Liu. Stability and stabilization of switched
linear systems with mode-dependent average dwell time. IEEE Transactions
on Automatic Control, 57(7):1809–1815, 2012. [Cited on pages 6 and 10.]

[94] X. Zhao, L. Zhang, P. Shi, and M. Liu. Stability and stabilization of switched
linear systems with mode-dependent average dwell time. IEEE Transactions
on Automatic Control, 57(7):1809–1815, 2012. [Cited on pages 38 and 39.]

[95] S. Zheng et al. Controller design for vehicle stability enhancement. Control
Engineering Practice, 14(12):1413–1421, 2006. [Cited on page 62.]

[96] Zutshi et al. Symbolic-numeric reachability analysis of closed-loop control
software. In HSCC. ACM, 2016. [Cited on pages 17 and 30.]

Publications From This Thesis

Conference Papers
S. Adhikary, I. Koley, S. K. Ghosh, S. Ghosh, S. Dey, and D. Mukhopadhyay.
Skip to secure: Securing cyber-physical control loops with intentionally skipped
executions. In Proceedings of the 2020 Joint Workshop on CPS&IoT Security and
Privacy, pages 81–86, 2020.

Journal Papers
Sunandan Adhikary, Amit Gurung, Jay Thakkar, Antonio Bruto Da Costa, Ar-
itra Hazra, Soumyajit Dey, Pallab Dasgupta,"SMT-based Verification of Safety-
CriticalEmbedded Control Software", IEEE Embedded Systems Letters.

81

	APPROVAL OF VIVA-VOCE BOARD
	Declaration
	Preface
	Abstract
	Notations and Abbreviations
	Introduction
	Motivations and Contributions
	Safety Verification of CPS Implementation
	Resource-Friendly and Provably Secure CPS Security
	Resource Optimization of Secure CPS:

	Our Objectives
	Contributions
	Safety Verification of CPS Implementation Using Formal Methods
	A Formal Methodology using Control theory for Resource Optimization of Secure CPS
	Resource-Friendly and Provably Secure CPS Security Design Using Formal Methods

	Thesis Organisation

	State-of-the-art Approaches in Safe and Secure CPS Design
	CPS Design and Verification
	Related work on Safety Verification of CPS
	Threats to CPSs and Used Security Measures
	Related Work on Lightweight CPS Security Design
	Related Work on Aperiodic Control Executions and Weakly-hard Constraints for CPS
	Summary

	Verification of Embedded Controller Implementations in Safety-critical CPS
	Background
	 Tool Input Specifications:
	Tool Design
	Experimental Results
	blackExperimental Setup
	blackSystem Descriptions and Safety Verification

	Concluding Remarks

	Automata-Theoretic Framework for Performance-aware Aperiodic Control Execution Synthesis
	System Model
	Control Design and Performance Metrics

	Formalization of Switching between Control Executions and Control Skips
	Stability Analysis of Switched Systems using MDADT Approach
	Recognizer for stable control loop skips
	Results
	Concluding Remarks

	Utilizing Aperiodic Control Executions to Design Resource-friendly Secure CPS
	Description and Formalization of Secure CPS
	Control System Modeling
	Control Design and Performance Metrics
	Formalization of Sporadic IDS
	Attack Modeling

	A Motivating Example
	Proposed Methodology
	Attack Vector Synthesis
	Synthesizing Attack Resilient Patterns

	Results
	Case Studies
	Manifestation on CAN bandwidth

	Concluding Remarks

	Conclusion
	Summary
	blackLimitations and Future Scopes
	Final Note

	Bibliography
	

